全等三角形教案精编4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“全等三角形教案精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

数学《全等三角形》教案1

教学目标

1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实 验,发现新知识的能力。

重点难点

1、难点:让学生掌握边边边 公理的内容和运用…差异网 …公理 的自觉性;

2、重点:灵活运用SSS判定两个三角形是否全等。

教学过程

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的。

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)

上一节课我们已经探讨两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 、 、 ,分别为 、 、 ,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。

步骤:

(1)画一线段AB使 它的长度等于c()。

(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

(3)连结AC、BC.

△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的。 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为()。

2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)

3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定,这个三角形的形状和大小就完全确定)

4、范例:

例1 四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由()全等判定法,可知 △ABC≌△CDA

以上就是差异网为大家带来的4篇《全等三角形教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

苏教版全等三角形教案2

苏教版全等三角形教案(二)

教学目标

知识与技能:理解三角形全等的条件:角边角、角角边。三角形全等条件小结。掌握三角形全等的“角边角”“角角边”条件。能运用全等三角形的条件,解决简单的推理证明问题。

过程与方法:经历探究全等三角形条件的过程,进一步体会操作、归纳获得数学规律的过程。掌握三角形全等的“角边角”“角角边”条件。能运用全等三角形的条件,解决简单的推理证明问题。

情感态度与价值观:通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

教学重点:已知两角一边的三角形全等探究。

教学难点:灵活运用三角形全等条件证明。

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边、边角边后的一节课、有全面的学习经验、探讨出 角边角(ASA) 角角边(AAS)学生一定能理解。

课前准备 全等三角形纸片、三角板、

教学过程

一、创设情境,导入新课

1.复习:(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边。

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:①定义;②SSS;③SAS.

2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

二 、探究

[师]三角形中已知两角一边有几种可能?

[生]1.两角和它们的夹边。

2.两角和其中一角的对边。

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律。

教师活动:检查指导,帮助有困难的同学。

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等。

规律:

两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A/B/C/,使∠A=∠A/、∠B=∠B/、AB= A/B/呢?

[生]能。

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解。

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长。

②画线段A/B/,使A/B/=AB.

③分别以A/、B/为顶点,A/B/为一边作∠D A/B/、∠EB/A,使∠D/AB=∠CAB,∠EB/A/=∠CBA.

④射线A/D与B/E交于一点,记为C/

即可得到△A/B/C′.

将△A/B/C′与△ABC重叠,发现两三角形全等。

[师]于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

这又是一个判定三角形全等的条件。 [生]在一个三角形中两角确定,第三个角一定确定。我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

[师]你提出的问题很好。温故而知新嘛,请同学们来验证这种想法。

三、练习

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

四、例题

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可。

学生写出证明过程。

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]请同学们把三角形全等的判定方法做一个小结。

学生活动:自我回忆总结,然后小组讨论交流、补充。

有五种判定三角形全等的条件。

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径。

练习:图中的两个三角形全等吗?请说明理由。

五、课堂小结

我们有五种判定三角形全等的方法:

1.全等三角形的定义

2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)

六、布置作业

必做题:课本P44页习题中的第6,选做题:第11题

七、板书设计

数学全等三角形教案3

全等三角形

课题:全等三角形

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、 找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

数学全等三角形教案4

一、教学目标

知识与技能

掌握三角‌‌形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。

过程与方法

经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

情感、态度与价值观

在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。

二、教学重难点

教学重点

“角角边”三角形全等的探究。

教学难点

将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程

(一)引入新课

利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)

(四)小结作业

提问:今天有什么收获?还有什么疑问?

课后作业:书后相关练习题。

20 297899
");