全等三角形教案精编5篇
【导言】此例“全等三角形教案精编5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
全等三角形教案范文1
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1)投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
思考题:
板书设计:
只要功夫深,铁杵磨成针。山草香为大家整理的5篇全等三角形教案到这里就结束了,希望可以帮助您更好的写作全等三角形教案。
全等三角形教案范文2
学案是指教师依据学生的认知水平、知识经验,为指导学生进行积极主动地知识建构、掌握科学的学习方式、达成情感态度价值观目标、培养创新和实践能力而编制的学习方案,或称导学方案。
“导学案”是集教案、学案、作业、测试和复习资料于一体的师生共用的教学文体,是将上课意图、学法指导、重点考点、达标训练、测试内容等在课前发给学生进行预习和课后复习的教学文本。导学案的核心主旨是“先学后教,以学定教”。
导学案的设计没有固定的模式,但一般会有预习环节、探索新知环节及巩固拓展环节,下面针对这三个环节结合等边三角形一课的实践谈谈我的做法和体会:
一、预习环节
预习环节是传统教学中所没有的环节,是导学案实践中的一个新生环节,是学生在老师的预习引导下开始自学、接着自测并小结的环节。传统的教学更注重的是教师的教和学生配合着的学,而导学案中预习环节的设置则是充分相信孩子,放飞他们的思维,以他们自学的状况尤其是自学小结来决定教师后续教什么,如何教,真正做到教师的教配合学生的学。
我所执教的“等边三角形”是在学习了等腰三角形的性质和判定的基础上进行教学的。我是这样来设计预习环节的,分成三部分:第一预习引导,第二预习自测,第三预习小结,这三部分紧密联系,缺一不可。
预习引导:预习引导犹如茫茫大海中的灯塔,要为学生开展自学指明方向。在本课中我设计的预习引导是三个问题:(1)等腰三角形与等边三角形的定义分别是什么?它们之间有怎样的关系?(2)等腰三角形有哪些性质?这些性质等边三角形是否具备?除了这些性质外,等边三角形还有哪些性质?(3)等边三角形有哪些判定?我之所以这样设计,是为了让学生了解学习一个新图形往往分成三步:定义、性质和判定,而这三步既是对学习等腰三角形的一个回顾,又是后继学习四边形的一个模式,也是这节课的一个流程,同时也渗透类比思想。预习引导中的问题设置引领学生认真研读教材,凸显这节课的重点要点。
预习自测:预习自测题的设计旨在检测学生的预习效果,教师根据学生自测的情况定夺本堂课的教学,体现以学定教的原则。我觉得预习自测题的设置要注意两点:(1)涵盖面广,如,我设计的预习自测中既涵盖了等边三角形的定义、性质,也涵盖了它的多个判定。(2)以浅显为主,因为自测题毕竟是在学生自学的基础上进行的,旨在鼓励学生,增强其学习信心和能力,而不是要给学生当头一棒,所以自测题的设计教师一定要把握住难度,尽可能让学生体会到自学的轻松感与愉悦感。
预习小结:预习小结的设计旨在要求学生通过预习整理本节课的知识要点,并让学生做到学有所思。预习小结中可以突出一些关键字让学生填空,如,等边三角形的性质有(1)___(2)___(3)___我在预习小结中还大胆设计了问题4:“通过预习,我还有如下问题:___”。正如预期的一样,学生果然有填到“等边三角形有哪些性质和等腰三角形类似?”“等边三角形的性质和判定还有哪些?”“等腰三角形有三线合一,等边三角形具备吗?”“等边三角形是不是轴对称图形?”这些就是学生真实的学习状况,为我上课怎样导提供了最直接、有力的帮助。还有一个学生提出了这样的问题:“等边三角形在生活中有什么应用?用几个等边三角形可以拼成什么样的图形?”可见,这孩子的思维能与生活实际联系起来,并对拼图很感兴趣,预示了这孩子学习的潜力。
通过预习环节,我知道学生已经掌握了哪些知识,哪些知识还有待教师的梳理、点拨,这样以学生自学的状况来决定教师的教才更有针对性,才更有意义,体现了导学案的核心主旨――先学后教。
二、探索新知环节
区别于传统教学,在导学案的实施过程中,学生对“新知”在预习这一环节已经知晓或部分知晓,所以,教师要利用先学的成果,有选择、有针对性地和学生一起梳理新知,面面俱到不是美,“充分准备,有限呈现”才是真。
1.对于有些知识我们不仅要知其然,而且要知其所以然。如,“等边三角形的每一个内角为什么都相等,又为什么都等于60°呢?”这个问题用到了等边对等角及三角形内角和的性质,所以有必要追根究底一番。
2.根据学生的特点与状况对教材内容进行适当补充与及时
优化。
补充:如,教材上只提到等边三角形是特殊的等腰三角形,且等边三角形的性质只有一条。从预习小结中可以看到学生对性质有意犹未尽的感觉,“等边三角形具有等腰三角形的一切性质吗?”问题由学生抛出,学生回答。其实等边三角形具有等腰三角形的一切性质,因此等边三角形是不是轴对称图形?三线合一性质等边三角形是否也适用?类似的问题学生就都能轻松作答,并能对预习小结中不够完善的地方作及时补充。
优化1:教材上等边三角形的判定都是用语言文字表述的,而今后学生用得更多的是符号表达,所以,学生能否把文字语言转化成符号语言,是这堂课必须考量的一个知识点。“如何用符号来表达等边三角形的判定”是教师在课堂上必须作出的提问。尤其对于“有一个内角等于60°的等腰三角形是等边三角形”这一概念我在黑板上认真板书,加深学生的印象。
优化2:学生接受一些零星的知识并不难,难在如何把已学的知识整理成知识体系。作为教师的我们,通常可以利用图表的形式和学生一起整理知识体系,便于学生记忆并运用。下图清晰地显示出有三种方法说明一个三角形是等边三角形。记住这张图也就记住了等边三角形的三个判定。
■
三、巩固拓展环节
相同的教案甚至是同一道题目,有的教师似乎分析得很透彻,但学生仍不知所云,有的教师言语不多,在关键处点拨一二,学生就会豁然开朗,因此新的教学模式向教师提出了更高的要求,“以学定教”更是具有很大的挑战性。
教师的点拨、引导要恰到好处。点拨过多,学生的思维会受到限制,得不到应有的锻炼,点拨过少,学生的难点没法突破,会打击学习的自信心。要设计恰当的问题系列就需要教师对学生非常了解,学生对于这类题可能会在哪里卡住,是因为什么原因卡住,需要如何点拨,这一障碍就能逾越过去,这需要教师一定的经验积累,同时教师也要从学生的学习活动(如,预习、探索新知等部分)中发现学生认知上的缺陷并加以引导。这也是体现导学案的核心主旨――“以学定教”的原则。
几何图形题是数学学习的难点之一,只要注重平时的日常教学中经验的积累与数学思想方法的渗透,困难终将被克服。如,“等边三角形”一课有这样的题目:
已知ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且有DE=DB,问:AE、BE、BC有什么数量关系?
■
首先,培养学生“读条件,想结论”这点很重要,一些简单的题目读完条件,想想结论,题目的解决方案已经出现了。此题中,由条件马上得到DBE是等边三角形,从而有三边相等,三内角为60°,不管这些结论对此题有无帮助,这些结论都应该被很快联想到。
其次,要鼓励学生大胆猜测,严格论证。
问1:AE、BE、BC长度看似有什么数量关系?预设AE=BE+BC。
问2:观察BE+BC可能与哪条线段相等?预设BE+BC=DC。
问3:如何证明AE和DC这两条线段相等呢?预设学生短时间思考。
问4:证明两条线段相等的常用方法有哪些?预设等量代换、等角对等边、三角形全等等。
当前两种可能性被否定时,三角形全等似乎是唯一的救命稻草,然而这根救命稻草当学生去伸手抓时,却还差了一小段距离,怎么办?
问5:能否通过添辅助线来构造什么图形?预设全等三角形、等边三角形。
问6:如何在图中构造全等三角形或等边三角形呢?
问题6才是这个题目的难点,我引导学生从图形中的数量关系去尝试,延长DC到F,使CF=BD,连结AF,这样就构造了一个ACF与ABD全等,从而进一步得到ADF为等边三角形,这样,这个题目也就迎刃而解。
■
回顾此题的分析过程,问题串的有序提出,其实质是分析法的应用,锻炼了学生的逆向思维。问题4的提出作用也不小,适时帮助学生归纳一些解题中的常用方法和技巧,让学生碰到类似问题时能有一个切入口,能做到举一反三,达到事半功倍的效果。
学生在互相讨论、师生互动的状态下完成此题。由于在找等边三角形时还可以延长EB到P使BP=BC,连接AP、CP,构造等边三角形PBC,再利用三角形全等和平行线性质和判定推出本题结论;另外,本题还可通过过A点作AM∥BC交BE延长线于M点、连接DM等,所以,这个题不止有一种构造图形的方法,我在课堂上只讲解了一种,另几种留给学生课后继续思考,一题多解。一道好的题就是这样,耐人回味,具有挑战性,使学生思维的提升从课内延伸到课外。因此,教师的选题很重要,教师的问题设计更是一门艺术。
在实践中,我深刻体会到教师观念、角色的转变是导学案成功实施的基础。教育就是一种有教师参与帮助的学习,教师是学生学习器官的延伸力量。教师进入教育过程的身份注定了教师不能作为教育的主体,必须依据学生的学习规律和学习状况安排自己的工作,成为学生学习的帮助者、促进者。课堂不再是教师表演的舞台,而是暴露问题、分析问题、解决问题、促进学生成长的舞台。教师应由传统的灌输者演变为适时的点拨者、引导者。要充分了解学生,预设学生在预习过程中可能会碰到的困难和障碍,想好解决方案,并配备习题加以巩固提升。
全等三角形教案3
福建省惠安县荷山中学 李志添
关键词:发散思维 开放性题目 一题多解 一题多变 题组
发散思维又称“求异思维”,指思维活动发挥作用的灵活与广阔程度,是一种要求产生多种可能的答案而不是单一正确答案的思维。在思维活动中,体现从一点出发沿着多方向达到思维目标。发散思维包括横向思维、逆向思维及多向思维,它的基本特征是:流畅性——能在短时间内表达较多的概念,反应迅速;变通性——思维方向灵活变化,举一反三,触类旁通,能提出超常的构想或新观点;独创性——对事物的处理或判断表现出独特的见解。
因为发散性思维对同一个问题,从不同的方向,不同的侧面,不同的层次,横向拓展,逆向深入,采用探索、转化、变换、迁移、构造、组合、分解等手法,开启学生心扉,常常得出新颖的观念与解答,所以,培养学生的发散思维能力是创新教育的需要。作为数学教师理应顺应时代的潮流,竭力把自己的课堂变成激发学生潜能,提高发散思维能力的场所。
怎样培养学生的发散思维呢?我做了如下尝试:
一、设计开放性题目
开放题的显著特征是答案的多样性和多层次性,要求学生通过观察、比较、
分析、综合甚至猜想,展开发散性思维,运用已学过的数学知识和数学方法,经过必要的推理,才能得出正确的结论。
比如,在学习了全等三角形的判定后,我设计了这样一道开放性题目:
例1 只有两边和一角对应相等的两个三角形不一定全等,你如何处理和安排这三个条件,使两个三角形全等,依照方案⑴:若这个角的对边恰好是这两边中的大边,则这两个三角形全等。你还可以设计几个方案?
经过讨论分析,学生各显神通,得出如下方案。方案⑵:若这个角的对边恰好是两边中的小边;方案⑶:若这个角是这两边的夹角;方案⑷:若这两边相等;方案⑸:若这个角是直角;方案⑹:若这个角是钝角;方案⑺:若这两个三角形都是锐角三角形;方案⑧:若这两个三角形都是钝角三角形;方案⑨::若这个角是这两个三角形的公共角,它所对的边为其中一已知边;方案⑩:若这两边中有一边为两个三角形的公共边,另一边为已知角的对边,则这两个三角形全等。
这样的训练可以让学生充分展开想象的翅膀,使学习能力和思维能力得到同步提高。
二、注重一题多解
在教学过程中,有目的地精选典型的例题、习题、练习,鼓励学生积极思考,引导他们多角度,多层次地观察思考问题,寻找解题途径。通过一题多解,调动学生学习的主动性和积极性;并通过总结比较出较好的解题方法,培养学生思维的灵活性和创造性。
比如,在复习初三“一元二次方程”一章时,选了第31页的例4作为一个巩固知识、训练学生思维的复习题:
例2 已知两个数的和等于8,积等于9,求这两个数。
首先让学生明确两个相等关系:⑴“和”等于8;⑵“积”等于9。接着启发学生思考怎样用、在哪个步骤用这两个关系。然后明确指出本题有多种解法,让学生探讨,合作交流,鼓励学生积极探索。结果收集到以下四种解法:
1、两个相等关系都用来列方程:设两数分别为x 、y,则x+y=8,xy=9,解方
程组。
2、设时用关系⑴,列时用关系⑵:设一个数是x,则另一个数为8-x,得方程x(8-x)=9,解一元二次方程。
3、设时用关系⑵,列时用关系⑴:设一个数是x,则另一个数为9/x,得方程x+9/x=8,解方式方程。
4、由根与系数的关系可知,这两个数就是一元二次方程x2-8x+9=0的两根。
通过一题多解的训练,让学生动脑、动口、动手,促进了学生的发散思维。
三、注重一题多变
在教学中,如果把一些题的条件和结论适当改变得出新题目,由一题变多题,通过演变,可使学生时时处在一种愉快的探索知识的状态中,从而充分调动学生的积极性,启发学生的思维,提高学生的解题能力和数学素质。
例3 甲、乙两站间的路程为360km。一列慢车从甲站开出,每小时行驶48km,
一列快车从乙站开出,每小时行驶72km,两车同时开出,相向而行,多少小时相遇?
①〔条件变式〕甲乙两车同时从A地出发,甲的速度是48km/时,乙的速度是72 km/时,它们背向而行,几小时相距800km?
②〔结论变式〕甲乙两站相距360km,慢、快两车分别从甲乙两站同时相向而行,3小时相遇,快车每小时比慢车多行驶24km,求慢车速度。
③〔背景变式〕甲乙两队合作360个零件,甲队每小时做72个,乙队每小时做48个,甲队先做25分钟后乙队加入合做,问:甲、乙两队合做几小时完成任务?
进行一次适当的变式训练,学生就相当于做了一套“思维体操”,它不仅能巩固知识,开阔学生视野,收到举一反三、触类旁通的效果,还能活跃学生思维,提高学生的应变能力。
四、设计题组进行对比训练
精心设计外观相似而解法或结论又不尽相同的题组,可使学生在类比中巩固常规方法,在类比中促进发散思维能力的提高。比如在复习初三“一元二次方程”一章时,我设计了如下题组:
例4 1、设x1、x2是方程2x2﹣6x+3=0的两个根,利用根与系数的关系求(x1﹣x2)2的值。
2、设x1、x2是方程x2﹣3x+2=0的两个根,求(x1﹣x2)2的值。
3、设x1、x2是方程2x2﹢6x+3=0的两个根,求x12﹣x22的值。
我发现,不少学生仍然用根与系数的关系做第2题,而做第3题则陷入困境。这说明第一题产生了“负迁移”,也说明学生缺乏灵活性和应变能力,把为什么要掌握根与系数的关系去求代数式的值的初衷给忘记了。经过回顾、启发后,学生的脑子活了,知道了应该根据方程的根的情况去选用合适的方法,一些学生还用了不同的方法做第3题。
记得有这样一个故事:有位教授做了一个试验,在黑板上随手画了一个圆圈,问小学生:“这是什么?”“圆”,“脑袋”,“太阳”,“烧饼”,“鸡蛋”……学生思维非常活跃。可是用同样的问题问大学生时,却无言以对。这件事启发我,身为教师,一定要重视学生发散思维能力的培养,让学生的思维插上想象的翅膀。
参考文献:
全等三角形教案范文4
1 显性的创设情境、联系生活、让学生感知数学美生成隐性的感悟数学文化、数学价值及激发数学学习兴趣和动机、提高审美意识
案例1:《黄金分割》教学片断
师:美是一种感觉,本应没有什么客观标准,但物体形状的比例提供了在匀称与协调上的一种美感参考,这个比例就是我们现在研究的黄金分割。
生:(观看课件演示,感受艺术美)
师:请大家展示课前收集的资料。
生1:矩形玻璃门窗长与宽的比;舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
生2:华罗庚教授的优选法;蝴蝶身长和翅宽的比。
生3:生活中人们最舒适的环境气温为22 ℃―24 ℃,也源于体温36 ℃―37 ℃与0618的乘积恰好是222℃―229 ℃.
生4:女士选择高跟鞋提高腿长与身高的比。
生5:还有课本上著名画家达・芬奇的名画《蒙娜丽莎》,画面中脸部被围矩形ABCD的宽与长之比。
……
师:同学们做得很好,那么什么是黄金分割呢?(课件演示)(利用工具度量并计算)比值约为0618,所以FABF与BFAB相等。
评析 本片段是数学与现实生活紧密联系的典范。表面上,是教师课前安排学生对资料进行查找和收集,课上教师引导学生通过建筑、艺术、生活上的丰富的实例来了解黄金分割这个数学概念,感知黄金分割的数学美。深层次地,教师是通过组织学生查找、搜集、感知、交流、审美、体悟等过程,引导学生深刻地体会到数学的文化价值,也让学生深深地意识到,数学就来源于我们的周围,从而对数学产生亲近感和热爱之情,也增强学生的实践意识、审美情趣。本例成功地做到围绕基本知识、基本技能等教学目标为主线,同时渗透情感等非智力因素,突显隐性教学目标。
2 显性的观察、猜测、归纳、证明等生成隐性的科学态度、科学方法、理性精神、缜密思维、推理能力
案例2:三角形的内角和定理
(1)利用手中的三角板用特殊角说明三角形的内角和定理;(直接材料)
(2)用硬纸作一个三角形,然后把它的三个内角剪开后拼在一起。看看是否拼成一个平角,进而概括出三角形内角和定理;(间接构建)
(3)用几何画板构造动态效果,把三个内角构造成一个平角;(精确测量)
(4)构造平行线,用几何证明的方法证明三角形的内角和定理。(理论证明)
评析 学生对各种学习材料的接受和理解是参差不齐的,对数学理论的认知水平也各不相同。为了让学生全面而深刻理解教师所要传授的知识,也为了让学生更多角度观察、更多层面思考问题的实质,教师们经常从不同侧面、用不同的方法、准备多种材料,让学生充分感知、充分经历、充分理解。本案例从“直接材料”“间接构建”“精确测量”“理论证明”四个方面来向学生充分展示三角形的内角和定理,教师采用一个理论多种求证的方法,从直接到间接、从具体到抽象、从特殊到一般,让学生充分经历观察、猜测、动手探究、理论证明的过程,由浅入深,螺旋上升地训练学生缜密的推理,明确证明的意义。显性的动手、观察、探究、归纳、抽象,渐进地培养隐性的推理能力、缜密思维和科学态度,同时让学生亲身感受身边的数学,增强学习的自信心,提高学习数学的内隐力。
3 显性的抽象、建立数学模型、经历数学化过程生成隐性的自主探究、数学思维、数学思想方法
案例3:探索多边形的内角和公式
目的:探索每个多边形能分成几个三角形,并发现多边形内角的度数之和的计算公式。
先画出四边形、五边形、六边形,并用对角线将他们分成若干个小三角形,如下图
完成下表
评析 现代数学教学观十分强调学生的数学学习应该以“问题情境―建立模型―解决问题―拓展应用”的模式加以组织。本案例就是基于这个模式进行的。为了抽象出多边形的内角和公式,先画出四边形、五边形、六边形、七边形、八边形等,通过连接对角线将多边形分成小三角形,找出三角形个数以及内角和度数,然后再通过列表,观察猜测,寻找规律,最后总结抽象出多边形内角和度数公式这个数学模型。但是,如果仅仅是为了得到多边形内角和公式这个结果,我们是完全没有必要设计这一系列的活动的。所以,此设计表面上是为了得出多边形内角和公式,实质则是通过学生动手、动脑、观察、抽象、建立数学模型的过程,让学生体会数学自主探索、发现的乐趣,从中体悟数学的抽象、归纳、推理的数学思维和从特殊到一般的数学思想方法。
4 显性的组织探究、分组活动、互相合作与交流等生成隐性的合作精神、团队精神、表达沟通能力、数学自信心
案例4:在教“一百万有多大”时,教师设计问题提出:刚才我们从不同的角度感受了一百万英镑有多大,接下来同学们自己动手,进一步感受一百万有多大。
小组活动:选择其中的一个问题进行研究,并写出活动报告。
1) 估计100万个字的书的厚度;
2) 估计100万步的长度;
3) 估计100万滴水的体积;
4) 估计100万粒大米的质量。
教师提供所需仪器:天平、量筒、米尺和大米等。各小组到学具展台上自主选择实验材料,然后展开积极的探索与实验。要求:10分钟以后,小组代表上台汇报研究结果。
最后,教师请同学们谈谈上完这堂课的感受。
附:下面是某一小组的实验报告单。
“100万有多大”实验报告单
实验目的 估计100万粒米有多重
实验工具 米粒、天平、计算器
实验步骤及过程 数出200粒米;
称出它的质量是4克。算出平均每粒米的质量4÷200=002.
100万粒米的总质量:
002×1×106=2×104=20千克
一般地,若三口之家一天吃15千克米,20÷15≈13(天)
估算结果 100万粒米可供三口之家吃7天
评析 当学生在教师的引导下初步体验了100万英镑有多大之后,求知欲渐强,急于知道100万到底有多大。此时老师适时地安排了这项以小组为单位的探究活动,让学生通过自己的操作来得到急于想知道的答案。在活动过程中,因为涉及到测量、数数、记录、计算、总结等多项工作,各小组学生必须通过合理的分工来展开活动,而这就激发了学生的合作意识和团队精神。通过交流探讨,各小组自主地确定实验项目、方案和步骤,选择实验工具,操作并收集证据,估算总结,共同完成了实验,得到了自己想要的答案,又增强了对数学的信心。所以说,教师安排的分组探究活动,不仅让学生得出了自己想要的答案,更重要的是学生得到了在实验操作中亲身体验的机会。活动中的分工、合作、思考、交流、沟通、实践及对合理答案寻求,使他们获得了丰富的数学活动的经验,提高了表达交流能力,体会到团队合作的乐趣。
5 显性的开放题设计、一题多解、变式训练生成隐性的开放性思维、批判性思维、创新意识、实践能力
案例5:请设计三种不同的分法,将直角三角形(如下图)分成四个小三角形,使得每个小三角形与原直角三角形都相似(画图工具不限,要求画出分割线段,标出说明的必要记号,不要求证明,不要求写出画法).注:两种分法只要有一条分割线段位置不同,就认为是两种不同分法。
分法:
全等三角形教案5
设计多解型练习
数学练习的设计并不是单纯的让学生巩固新知,还要注重学生各方面能力的培养。这就需要教师在练习中的巧妙渗透,教师可以设计一些一题多解型练习,让学生可以从更多的角度去思考问题,以更好地发散学生思维,提高学生创新思维能力。
例如:在教学“全等三角形”时,教师为学生设计了一道较为开放的数学练习:如图,其中A、B、C这三个点在同一直线上,且∠A=∠C,都为90度,AB=CD,请你再添加一个条件,使得三角形EAB全等于三角形BCD。
学生们在思考这一问题时,首先考虑到判定两个三角形为全等三角形的条件,有的学生说可以再添加一个条件AE=CB,这样恰好可以利用全等三角形的判定方法SAS。还有学生想到题意中,已经给出一个角和一条边分别对应相等,我只要再随意的给出一个角对应相等,就可以判定这两个三角形全等,因为有判定方法:AAS、ASA。很快学生就又想到利用直角三角形的知识内容,从“HL”的角度入手,寻找更多的解题思路。学生在解这一练习时,选择从不同的角度思考,极大地拓展了数学思维。
课堂中,教师所设计的练习,并没有唯一答案,打破了传统的练习模式,给学生创造了很大的思维空间,让学生的创新思维得以发展与提高。
设计规律性练习
初中生的思维正处于发展的重要时期,教师教学中,要注重对学生此方面的训练。在设计课堂练习的过程中,教师可以依据实际教学情况,设计一些找规律的问题,让学生可以开拓思维,大胆创新,更进一步地挖掘学生的思维潜能。例如:在教学“因式分解”时,教师在引导学生学习完利用公式法因式分解的知识内容后,在引导学生练习巩固时,为学生设计了一道找规律问题:22-12=(2-1)(2+1)=2+1;32-22=(3-2)(3+2)=3+2;42-32=(4-3)(4+3)=4+3;152-142= + ;你从中发现了什么规律,能用n表示吗?并试着证明一下自己发现。
学生们要想解决最后的问题,必须观察寻找其中所蕴含的规律。在探索的过程中,学生不断地猜想、分析、观察、创新,在一次次的尝试后,终于发现其中的规律,最后在横线上写出“15+14”的结果。并探索出最后规律:(n+1)2-n2=(n+1-n)(n+1+n)=(n+1)+n。在准备证明时,学生发现这是我们所学过的平方差公式的形式,于是,学生大胆地采用平方差公式的知识,对其进行因式分解,并在因式分解后,证明出自己的结论。
教师通过为学生设计规律性练习,让学生的思维得到了很好挖掘。这种教学方法,有效地活跃了学生的创新思维,让学生的创新思维能力、抽象思维能力得到了很好的发展。
设计创新型练习
让学生能够在学习的基础上学以致用,也是教师教学的重要目的之一。枯燥单一的数学练习,很难引起学生的学习兴趣,相反还很可能导致学生丧失学习兴趣。由此,教师可以设计一些创新型练习,以吸引学生注意力,放宽学生的思维视野,进而更好地训练学生创新思维。例如:在教学“一元一次不等式”r,教师为学生设计了一道实际应用问题:某商店开展促销活动,针对顾客制定了两种不同的方案。
第一方案:用168元办理会员手续,会员在购物时可以享受8折的优惠;第二种方案:如果不加入会员系列,那么每件商品将会享受折的优惠。小红不是该店的会员,你们帮小红算一算,她如果选择购物,应该选哪一个方案会更合算?
这一练习较为开放,需要学生结合实际情况去思考去比较。学生想到需要知道小红购买的商品的原价格是多少,题中并没有给出,于是便将其设为x元。之后,学生们想到最后的问题中让求哪一种更合算,也就是哪一种最后花的钱最少。所以,需要求出这两种方案所需要花的钱数。学生们在经过一定时间的思考后,列出相应的算式。第一种方案:“80%x+168”,这是其所要花费的总价钱。第二种方案:“95%x”。学生们继续思考,单纯地观察这两个算式,我们根本判断不出哪种方案更合算,应为其中有一个未知数“x”。很快学生想到自己课上所学的一元一次不等式的知识,想到分情况考虑这一问题。
教师通过设计实际问题,让学生可以有机会学以致用,并很好地培养了学生分类的数学思想,锻炼了学生的创新思维,促进了学生有效参与。
上一篇:后赤壁赋教案(精编5篇)