4.2一元一次方程【实用5篇】

网友 分享 时间:

【导言】此例“4.2一元一次方程【实用5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初中七年级上册数学《解一元一次方程》教案优质【第一篇】

一、教材分析:

1、教材所处的地位和作用:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法。

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程。让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验。

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用。

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想。

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决。

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点。

教学重点:知道什么是方程、一元一次方程,找相等关系列方程。

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

1.生活引路,感知概念背景;

2.比较方法,明确意义;

3.感受过程,形成核心概念;

4.运用新知,巩固方法;

5.归纳总结,巩固发展。

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一) 情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

问题1:从上图中你能获得哪些信息?

问题2:你会用算术方法求吗?

问题3:你会用方程的方法解决这个问题吗?

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题。

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在。

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念。

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程。(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族。)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现。

方程的概念:含有未知数的等式叫方程。小学里已经给出了方程的概念,这里可适当处理。

在这里我开始向学生渗透列方程解决实际问题的思考程序。

(三)讨论交流

讨论1:比较列算式和列方程两种方法的特点。

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系。

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维。

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流。

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元。

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习。

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

1、例题:根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质。

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

元一次方程【第二篇】

再探实际问题与一元一次方程

-----销售中的盈亏(第一课时)

一。 教学任务分析

知识技能

使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。

教学

思考

1.会将实际问题转化为数学问题,通过列方程解决问题。

2.体会数学的应用价值。

解决

问题

会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的。盈亏问题,进一步了解用方程解决实际问题的基本过程。

情感

态度

通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。

让学生知道商品销售中的盈亏的算法。

难点

弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。

二。课前准备

教具

学具

补充材料

课件

铺垫练习     课堂练习  拓广延伸练习

.教学过程设想

教  师  活  动

学生活动

设计意图

一。创设情境,引入新课

前面我们结合实际问题讨论了如何分析数量

关系,利用相等关系列方程以及如何解方程,

可以看出方程是分析和解决问题的一种很有用

的数学工具,本节课我们就来探究如何用一元

一次方程解决实际问题。

学生回忆、猜想

激起学生主动回

忆、联想和学习欲

望。

二。师生互动,课堂探究

(出示课件)

教师先介绍图片,再提问

问题一:某商店在某时间以每件60元的价格

卖出两件衣服,其中一件盈利25%,另一件亏

损25%,卖出这两件衣服总的是盈利还是亏损,

或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。

学生观察、合

作交流、讨论、

发表看法

培养学生学会合

作交流,善于听取

他人见解和敢于发

言,让学生大体估

算身边的实际问题

,可激发学习兴趣

和探究的主动性。

问题二:渐进给出,教师因情引导,并板书

利润=进价×利润率

如果一件商品的进价是40元,

(1)    如果卖出后盈利25%,那么该商品的

利润怎样算?

(2)    如果卖出后亏损25%,那么该商品的

利润怎样算?

(3)那么利润、进价、利润率有什么关系?

学生合作交流

讨论、归纳、发

表意见

让学生结合生活

经验,由身边熟悉

实际的问题构建数

学模型,培养学生

会用数学方法解决

实际问题,和由特

殊到一般,概括能

力、学生感到好学

,进而乐学,从感

性上自然地熟悉销

售中的等量关系,

并逐步突破重难点

,为以后问题打下

基础。

问题三:渐近给出,教师因情引导,并板书

利润=售价-进价

或  利润+进价=售价

(1)小卖部老板的面包进价为元/个,

卖给同学们1元/个,老板获取利润怎样算?

(2)因而利润、售价、进价的关系又如何呢?

问题四:教师逐步给出,并引导学生根据问题

二、三中的等量关系来回答,解答,最后给出解

题步骤,并板书。

思考:盈利25%、亏损25%的意义?

引导学生得出:盈利25%,即这件商品的销售利润值(售价—进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价—售价)是商品进价的25%。

问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?

问题②:如何说明你的估算是正确的呢?

问题③:如何判断是盈还是亏?

问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?

问题⑤:商品销售中的进价、 售价、 利润、利润率有何关系?

巡视学生完成情况,给予辅导,最后给出解题

步骤。

三。归纳总结。

学生合作、交

流、讨论、思考

、补充解答过程

让学生学会回顾

已有知识,学会分

析解决实际问题,

养成好动脑、动手

、合作学习的习惯

,体验成功感,以

突破重难点,达到

教学目标。

四。知识拓展,教师给出问题

(1)    汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?

(2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30℅,以后每月付款450元,问明明的爸爸需几个月付清余下的款?

学生独立思考

并完成、展示

及时巩固所学知

五。回顾与小结

1.能理解商品销售中的基本概念及相等关系

,熟练地应用  “利润=售价-进价、

利润=进价×利润率”

来寻找商品中的相等关系

2.能联系以前研究过的问题,加深理解用一

元一次方程解决实际问题的一般步骤。

六。拓展延伸题。(略)

学生看黑板、

屏幕、教材、记

回顾所学知识,

学会梳理、概括、

总结。

七。作业布置

教材第97页 第3、题

学生记录

对已学知识强化

巩固

元一次方程【第三篇】

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1. 重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2. 难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

典型例题

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为元。

模拟试题

一。 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的一元一次方程,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

二。 解方程。

1.

2.

3.

4.

三。 列方程解应用题。

1. 一商贩以每个鸡蛋元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个元售出,结果获利元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

试题答案

一。 填空题。

1.                     2.

3. 1,1                     4.                   5.

二。 解方程。

1.                      2.

3.                    4.

三。 列方程解应用题。

1. 买364个鸡蛋

2. 戴红帽子4人,黄帽子3人

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1. 重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2. 难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

典型例题

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为元。

模拟试题

一。 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的一元一次方程,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

二。 解方程。

1.

2.

3.

4.

三。 列方程解应用题。

1. 一商贩以每个鸡蛋元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个元售出,结果获利元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

试题答案

一。 填空题。

1.                     2.

3. 1,1                     4.                   5.

二。 解方程。

1.                      2.

3.                    4.

三。 列方程解应用题。

1. 买364个鸡蛋

2. 戴红帽子4人,黄帽子3人

元一次方程【第四篇】

从古老的代数书说起---一元一次方程的讨论(1)

教学目标1.经历运用方程解决实际问题的过程;2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.通过具体的例子感受一些常用的相等关系式。对话探索设计〖探索1〗(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?解:设前年购买计算机x台,那么,设计(1)是让学生感受列代数式是列方程的基础。去年购买的计算机的数量是________;今年购买的计算机的数量是________;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:____________________________.合并得________________.系数化为1得______________.答:______________________.归纳:总量等于各部分量的和是一个基本的相等关系。〖探索2〗(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本。(2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本。(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本。这个班有多少学生?解: 设这个班级有x名学生,根据第一关系,这批书共_________________本;根据第二关系,这批书共_________________本;这批书的总数是个定值,表示它的两个不同的式子应该相等。熟悉这些关系有助于列方程。根据这一相等关系列得方程:________________________.想一想,怎样解这个方程?归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系。〖练习〗1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨。(2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨。每块地各用水多少吨?解:设第二块地(漫灌)用水x吨,根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量×25%),得第一块地(喷灌)用水________吨。根据关系: 两块地共用水300吨,可列方程:__________________________________.解得___________.答:___________________________.〖作业〗p79.练习,,6〖补充作业〗1.按要求列出方程:(1)x的倍等于36;     (2)y的四分之一比y的2倍大某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量。解:设前年的产量是x吨,根据关系: 去年的产量是前年的2倍还多150吨,得去年的产量为______________,根据去年的产量是950吨列方程:__________________ .解得___________.答_________________________.

元一次方程【第五篇】

教学目标

1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:

(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:

(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法

启发式教学和讨论式教学相结合

教学手段

多媒体

教学过程

(一)复习提问

提出问题:

1.什么是一元一次方程?

在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.

2.解一元一次方程的步骤是什么?

答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课

提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).

让学生讨论:

(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)

(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。)

强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课

1.含有字母系数的一元一次方程的定义

ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

2.含有字母系数的一元一次方程的解法

教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:

ax=b(a≠0).

由学生讨论这个解法的思路对不对,解的过程对不对?

在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。

含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同。(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤。)

特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零。

3.讲解例题

例1  解方程ax+b2=bx+a2(a≠b).

解:移项,得  ax-bx=a2-b2,

合并同类项,得(a-b)x=a2-b2.

∵a≠b,∴a-b≠0.

x=a+b.

注意:

1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数。

2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).

3.方程的解是分式形式时,一般要化成最简分式或整式。

例2、解方程

分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.

解:b(x-b)=2ab-a(x-a)(a+b≠0).

bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母。)

ba+ax=a2+2ab+b2

(a+b)x=(a+b)2.

∵a+b≠0,

∴x=a+b.

(四)课堂练习

解下列方程:

教材练习题1—4.

补充练习:

(x+b)=b2(x+a)(a2≠b2).

解:a2x+a2b=b2x+ab2

(a2-b2)x=ab(b-a).

∵a2≠b2,∴a2-b2≠0

解:2x(a-3)-(a+2)(a-3)=x(a+2)

(a-b)x=(a+2)(a-3).

∵a≠8,∴a-8≠0

(五)小结

1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系。

2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同。但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零。

六、布置作业

教材组1—6;B组1、

注意:A组第6题要给些提示。

七、板书设计

探究活动

a=bc  型数量关系

问题引入:

问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)

提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。

1、由学生讨论,得出结论。

2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总

长度为b,单位长度的质量为c,a,b,c之间有什么关系?

由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量 ,再称

出其余电线的总质量 ,则 (米)是其余电线的长度,所以这捆电线的总长度为( )米。

引出可题:探究活动:a=bc型数量关系。

1、b、c之一为定值时。

读课本—并填表1和表2中发现a=bc型数量关系有什么规律和特点?

(1)分析表1

表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比

较:宽c=1,长由2变为4。

面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。

得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。

(2)分析表2

(1)表2从理论上证明了对表1的分析的结果。

(2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)

(3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是

我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。

2、为定值时

读书—,填空,自己试着分析数据,看到出什么结论?

分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。

可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。

这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。

3、实际问题中,常见的a=bc型数量关系。

(1)总价=单价×货物数量;

(2)利息=利率×本金;

(3)路程=速度×时间;

(4)工作量=效率×时间;

(5)质量=密度×体积。

… 例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。

策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。

解:y=2n

总结:本题考查a=bc型关系式,解题关键是弄清数量关系。

例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。

解:s=30t

例3、一种储蓄的年利率为%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。

解:y=%x

221381