一元一次方程的解法数学教案设计5篇

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“一元一次方程的解法数学教案设计5篇”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

初中七年级上册数学《解一元一次方程》教案优质1

第1课时 认识立体图形与平面图形

教学目标

1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;

2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥。

教学过程

一、情境导入

观察实物及欣赏图片:

我们生活在一个图形的世界中,图形世界是多姿多彩的。其中蕴含着大量的几何图形。本节我们就来研究图形问题。

二、合作探究

探究点一:立体图形

类型一 从实物图中抽象立体图形的认识

例1 观察下列实物模型,其形状是圆柱体的是(  )

解析:圆柱的上下底面都是圆,所以正确的是D.

方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

类型二 立体图形的名称与分类

例2 如图所示为8个立体图形。

其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.

解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.

方法总结:正确理解立体图形的定义是解题的关键。

探究点二:平面图形的认识

类型一 平面图形的识别

例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为(  )

个 个

个 个

解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形。故选B.

方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内。

类型二 由平面图形组成的图形

例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?

解:(1)由5个图形组成;

(2)由2个正方形和1个长方形组成;

(3)由3个四边形组成。

方法总结:解决这类问题的关键是正确区分图形的形状和名称。

三、板书设计

1.立体图形

特征:几何图形的各部分不都在同一平面内。

2.平面图形

特征:几何图形的各部分都在同一平面内。

教学反思

本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性。使学生以最佳状态投入到学习中去。通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识。使学生在讨论交流的基础上总结出立体图形和平面图形的特征。

第2课时 从不同的方向看立体图形和立体图形的展开图

教学目标

1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;

2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形。(重点,难点)

教学过程

一、情境导入

《题西林壁》

苏东坡

横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?

二、合作探究

探究点一:从不同的方向观察立体图形

类型一 判断从不同的方向看到的图形

例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是(  )

解析:从上面看依然可得到两个半圆的组合图形。故选D.

方法总结:本题考查了从不同的方向观察物体。在解题时要注意,看不见的线画成虚线,看得见的线画成实线。

类型二 画从不同的方向看到的图形

例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形。

解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形。

解:如图所示:

方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线。在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等。

它山之石可以攻玉,以上就是一米范文范文为大家带来的5篇《一元一次方程的解法数学教案设计》,希望对您有一些参考价值,更多范文样本、模板格式尽在一米范文范文。

初中七年级上册数学《解一元一次方程》教案优质2

教学目的:

知识与技能目标:

会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。

过程与方法:

通过探索 规律的问 题,进一步体会符号表示的意义,

通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。

教学重点、难点:

重点:整式加减的运算。

难点:探索规律的猜想。

授课时间:

教学过程:

Ⅰ.创设现实情景,引入新课

摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。

按照这样的方式继续摆下去。

(1)摆第10个这样的小屋子需要 枚棋子

(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。

Ⅱ.根据现实情景,讲授新课

例题讲解:

练习:1、计算:

(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

Ⅲ.做一做

P11 随堂练习

Ⅳ.课时小结

要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

Ⅴ.课后作业

P12习题:1(2)、(3)、(6),2。

板书设计:

第二节 整式的加减(2)

一、旅游中发现的几何体

二、生活中常见的几何体

VI.教学后记

初中七年级上册数学《解一元一次方程》教案优质3

第一部分知识点分布

1、 一元一次方程的解(重点)

2、 一元一次方程的应用(难点)

3、 求解一元一次方程及其在实际问题中的应用(考点)

第二部分关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

第一部分知识点分布

1、 一元一次方程的解(重点)

2、 一元一次方程的应用(难点)

3、 求解一元一次方程及其在实际问题中的应用(考点)

第二部分关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

初中七年级上册数学《解一元一次方程》教案优质4

一、学生起点分析

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

三、教学过程设计

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)复习引入,提出问题

活动内容:

1.复习提问:

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分。

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

用类似的方法计算(2)(-3)+ 2

(3) 3 +(-2)

(4) 4+(-4)

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究。

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

3、从中归纳概括出规律

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

(3)5+(-5); (4) 0+(-2)

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值。

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

活动内容:

1. 口答下列算式的结果

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(5)(+4)+(-4); (6) (-3)+0

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

(3)(-23)+0; (4)45+(-45)

全班学生书面练习,四位学生板演,教师对学生板演进行讲评。

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

活动内容:师生共同总结。

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

元一次方程5

方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

221381