比例的应用(比例尺) 教案教学设计(人教新课标六年级下册【最新4篇】
【阅读指引】阿拉题库网友为您分享整理的“比例的应用(比例尺) 教案教学设计(人教新课标六年级下册【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
比例的应用【第一篇】
教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系。
2.使学生能利用正、反比例的意义正确解答应用题。
3.培养学生的判断推理能力和分析能力。
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。
教学难点
利用正反比例的意义正确列出等式。
教学过程
一、复习准备。(课件演示:)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间。
2.路程一定,速度和时间。
3.单价一定,总价和数量。
4.每小时耕地的公顷数一定,耕地的总公顷数和时间。
5.全校学生做操,每行站的人数和站的行数。
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。
教师板书:
二、新授教学.
(一)教学例1(课件演示:)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答。
140÷2×5
=70×5
=350(千米)
2.利用比例的知识解答。
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长 千米。
=
2 =140×5
=350
答:两地之间的公路长350千米。
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答。
70×5÷4
=350÷4
=(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例。
所以两次行驶的_________和_________的_________是相等的。
3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?
4 =70×5
=
答:每小时需要行驶千米。
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行千米,需要几小时到达?
三、课堂小结。
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。
四、课堂练习。(课件演示:)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业 .
1.一台拖拉机2小时耕地公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?
3.某种型号的钢滚珠,3个重克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计。
教案点评:
本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。
在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。
探究活动
鱼池有多少条鱼?
活动目的
1.培养学生应用所学知识解决实际问题的能力。
2.培养学生的判断推理能力和分析能力。
活动形式
以小组为单位讨论。
活动题目
养鱼场有很多鱼池,要知道一个鱼池有多少条鱼。渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里。鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方。渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼。为什么?
活动过程
1.学生分小组讨论原因。
2.学生汇报讨论结果。
3.讲述生活中应用比例知识的事例。
参考答案
解:设水池里面共有 条鱼。
=750
答:水池里面共有750条鱼。
《比例尺》的教学设计 (人教新课标六年级上册【第二篇】
张鸿森供稿
教学内容《义教课标实验教科书 数学》(人教版)六年级下册第48-49页比例尺及应用。
教学目标
1、学生理解和掌握图上距离、实际距离和比例尺三者之间的关系:图上距离∶实际距离=比例尺或 图上距离实际距离 = 比例尺。掌握求比例尺、实际距离、图上距离的计算方法。
2、让学生学会使用电子地图,包括会使用电子地图上的放大、缩小、漫游、测距等工具,根据需要找到目的点。通过查看电子地图了解所居住地周围的环境,学会使用网上的电子地图解决实际问题。
教学重点比例尺的意义。
教学难点设未知数时长度单位的使用。
教学准备多媒体课件
自学内容见预习作业
教学预设
一、自学反馈
1、什么叫做比例尺?
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、怎样求比例尺?
求图上距离和实际距离的最简整数比。
3、一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?
(1)学生尝试独立求比例尺。
(2)汇报交流
50cm:40m=50cm:4000cm=1:80
(3)你是怎么想的?
二、关键点拨
1、求比例尺。
(1)怎样求一幅图的比例尺?
先写出图上距离与实际距离的比,再化成最简整数比。
(2)比例尺有什么特点?
比例尺是前项或后项为1的比。
(3)比例尺可以怎样表示?
数值比例尺和线段比例尺。(1:500000)或(线段比例尺)
2、求实际距离。
(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10cm,这两地之间的实际距离大约是多少?
(2)学生尝试独立列比例解答。
(3)汇报交流
解:设这两地之间的实际距离大约是x厘米。
=
=5000000
5000000cm=50km
(4)你觉得在求实际距离时要注意什么问题?
实际距离一般用千米做单位。
3、求图上距离
(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?
(2)学生尝试画操场的平面图。
(3)汇报交流
你是怎么画的?根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。
三、巩固练习新课标第一网
1、课本第53页练习八第1题求比例尺。
2、课本第52页做一做第1题。
3、课本第52页做一做第2题。
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
比例的应用【第三篇】
教学目标
一、知识目标
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生能利用正、反比例的意义正确解答应用题。
二、能力目标
1、培养学生的判断推理能力。
2、培养学生的分析能力。
三、情感目标
1、引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。
2、对学生继续进行辨证唯物主义观点的启蒙教育。
3、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识。
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。
教学难点
利用正反比例的意义正确列出等式。
教学步骤
一、铺垫孕伏(课件演示:)
判断下面每题中的两种量成什么比例关系?
1、速度一定,路程和时间。
2、路程一定,速度和时间。
3、单价一定,总价和数量。
4、每小时耕地的公顷数一定,耕地的总公顷数和时间。
5、全校学生做操,每行站的人数和站的行数。
二、探究新知
(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。(板书:)
(二)教学例1(课件演示:)
例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
1、学生利用以前的方法独立解答。
140÷2×5
=70×5
=350(千米)
2、利用比例的知识解答。
思考:这道题中涉及哪三种量?(路程、时间和速度三种量)
哪种量是一定的?你是怎样知道的?(“照这样的速度”就是说速度一定。)
行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系。)
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?(比值相等)
怎么列出等式?
解:设甲乙两地间的公路长x千米。
=
2x=140×5
x=350
答:两地之间的公路长350千米。
3、怎样检验这道题做得是否正确?
4、变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(三)教学例2(课件演示:)
例2 一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?
1、学生利用以前的方法独立解答。
70×5÷4
=350÷4
=(千米)
2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,__________和__________成__________比例。所以两次行驶的__________和__________的__________是相等的。
3、如果设每小时需要行驶x千米,根据反比例的意义,谁能列出方程?
4x=70×5
答:每小时需要行驶千米。
4、变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行千米,需要几小时到达?
三、全课小结
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。
四、随堂练习(课件演示:)
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
3、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?
(2)王师傅4小时生产了200个零件,照这样计算,__________?
五、布置作业
1、一台拖拉机2小时耕地公顷,照这样计算,8小时可以耕地多少公顷?
2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?
3、某种型号的钢滚珠,3个重克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计
例1 140÷2×5 例2 70×5÷4
=70×5 =350×4
=350(千米) =(千米)
速度一定,路程和时间成正比例 路程一定,速度和时间成反比例
解:设甲乙两地之间的公路长x千米 解:设每小时需要行驶x千米
4x=70×5
2x=140×5
x=350 x=
答:甲乙两地之间的公路长350千米。 答:每小时需要行驶千米
《比例的应用》教学设计【第四篇】
教学目标:
1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。
教学重点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
预习指导:
一、自学教材。
阅读教材第62~63页。
二、检查学习。
1.怎样两个量成正比例?
2.完成"试一试"。
教学准备:
课件和口算题。
教学过程:
一、导入
谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1 1.课件出示例1的表
⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?
⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。
2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。
3.我们可以写出这么几组路程和对应时间的比。
⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?
⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律
⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
课件出示:路程和时间成正比例。
⑷现在你能完整地说一说表中路程和时间成什么关系吗?
4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。
⑴课件出示"试一试"
⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?
课件出示表中的数据。
⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。
集体交流:
⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=、=…它们的比值相等,你写对了吗?
⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。
小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。
⑹你能完整地这样说给你的同桌听一听吗?
⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?
课件出示课题。
⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?
指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。
5.完成"练一练"
⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?
⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。
小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的`量是否成正比例的方法了吗?
三、练习
1.完成练习十三第1题。
请大家继续看课本66页第1题
2.完成练习十三第2题
⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?
⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。
3.完成练习十三第3题(课件出示题目)
⑴课件出示放大后的三个正方形、
⑵大家看一看,你是这样画的吗?
⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。
校对学生做的情况。
⑷请大家根据表中的数据讨论下面两个问题。
①正方形的周长与边长成正比例吗?为什么?
②正方形的面积与边长成正比例吗?为什么?
四、总结。
通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。
板书设计:
正比例的意义
路程和时间是两种相关联的量,
时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,
我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。