比例的应用(比例尺) 教案教学设计(人教新课标六年级下册【精选5篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“比例的应用(比例尺) 教案教学设计(人教新课标六年级下册【精选5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

用比例解决问题 教案教学设计(人教新课标六年级下册【第一篇】

导学内容:P59--60页例5、例6,完成做一做及练习九3--7题

导学目标

1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。

2、引导学生利用已学知识,自主探索,培养学生问题解决的能力。

导学重点:用比例知识解答比较容易的归一、归总应用题。

导学难点:正分析题中的比例关系,列出方程。

预习学案

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

导学案

1、学习例5

(1)出示例5:张大妈家上个月用了8吨水,水费是元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

/8=χ/10

8χ= ×10

χ=128÷8

χ= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、学习例6新课标第一网

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

总结:用比例知识解决问题的步骤是什么?

课堂检测

一、填空

1、车轮直径一定,所行的路程和车轮的转数成(    )比例。

2、因为每度电的价格一定,所以电费和用电的度数成(  )比例。

3、如果苹果的总重量一定,那么箱数和每箱的重量成(  )比例,也就是说,每箱的重量和箱数的(    )相等。

二、解决问题

1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?

2、一个修路队,原计划每天修400m,15天可以修完。结果12天就完成任务,实际每天修多少米?

3、学校用同样的方砖铺地,铺5m2 ,用了方砖120块,照这样计算,再铺23m2,一共用了这种方砖多少块?

课后拓展

如图,有一只老鼠沿着A→B→C的方向逃跑,同时有一只猫也从A点出发沿着A→D→C 的方向追捕老鼠,在E点将老鼠捉住。已知老鼠的速度是猫的58 ,且CE长9米。求平行四边形ABCD的周长。

板书设计

用比例解决问题

例5 张大妈家上个月用了8吨水,水费       例6.一批书如果每包20本,要

是元,李奶奶家用了10吨水,水        捆18包,如果每包30本,要捆

费是多少元?                              多少包?

解:设李奶奶家上个月的水费是x元。      解:设要捆x包。

=x10                                  30x=20×18

8x=×10                               30x=360

8x=128                                    30x=36030

x=1288                                       x=12

x=16

答:李奶奶家上个月的水费是16元。         答:要捆12包。

《比例尺》的教学设计 (人教新课标六年级下册【第二篇】

张鸿森供稿

教学内容《义教课标实验教科书  数学》(人教版)六年级下册第48-49页比例尺及应用。

教学目标

1、学生理解和掌握图上距离、实际距离和比例尺三者之间的关系:图上距离∶实际距离=比例尺或 图上距离实际距离 = 比例尺。掌握求比例尺、实际距离、图上距离的计算方法。

2、让学生学会使用电子地图,包括会使用电子地图上的放大、缩小、漫游、测距等工具,根据需要找到目的点。通过查看电子地图了解所居住地周围的环境,学会使用网上的电子地图解决实际问题。

教学重点比例尺的意义。

教学难点设未知数时长度单位的使用。

教学准备多媒体课件

自学内容见预习作业

教学预设

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50cm:40m=50cm:4000cm=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10cm,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000cm=50km

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

本节课的整体设计思路是:“从实际生活出发引入──抽象得出概念──再回到实际生活解决问题.” 首先,从中国地图入手,设下悬念,诱发学生的求知欲.紧接着,让学生汇报自己预习的情况,注意从中捕捉有价值的问题组织学生进行探讨研究.我让学生采取小组合作的学习方式,通过动手实践,操作,得出求比例尺、实际距离、图上距离的计算方法.在学习的过程中,我通过创设设计学校平面图这一生活情景,使学生始终处于动手操作、动脑思考的状态,让学生自己思考需要提供什么条件才能完成,解决了一个又一个的数学问题,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,通过本节课让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。在练习的设计上可以举面积计算的例子,强调比例尺只是距离比,不是面积比,同时可以举一些图上距离比实际距离扩大的例子,避免学生形成惯性思维。

《练习八》的教学设计

张鸿森供稿

教学内容人教版六年级下册P53-55练习八。

教学目标

1、通过练习,进一步巩固对数值比例尺和线段比例尺的认识,能够熟练的求实际距离、图上距离和比例尺,会根据实际距离和比例尺求图上距离并画图。

2、在练习过程中,体验运用比例尺知识解决实际问题的成功喜悦,渗透一一对应的数学思想。

教学重点会求比例尺、图上距离和实际距离。

教学难点求图上距离并画图。

教学准备多媒体课件

自学内容见预习作业

教学预设

一、自学反馈

根据数值比例尺:1:30000000,标出线段比例尺。你是怎么想的?

二、基本练习

1、团结路的实际距离是1800m。

(1)量得团结路在图上的距离为,求出这幅图的比例尺。

(2)将这幅图的比例尺用线段比例尺表示出来。

2、七星瓢虫的实际长度是5mm。量出右图七星瓢虫的长度,求这幅图的比例尺是多少?(课本第54页第3题)

三、对比练习

1、填空

比例尺 图上距离 实际距离

1:50000

1:000 450km

1:60000000 15cm

(1)你是怎样求图上距离的?

(2)你是怎么求实际距离的?

2、解决问题

(1)兰州到乌鲁木齐的铁路线大约长1900km。在比例尺是1:40000000的地图上,它的长是多少?

(2)在一副比例尺是1:5000000的地图上,量得上海到杭州的距离是。上海到杭州的实际距离是多少?

四、拓展延伸

1、篮球场长28m,宽15m。用1:500的比例尺画出篮球场的平面图。

(1)学生独立完成后小组交流。

(2)让学生说说自己的想法和做法。

2、课本第55页第10题。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《图形的放大与缩小》的教学设计

张鸿森供稿

教学内容《义教课标实验教科书  数学》(人教版)六年级下册第56-58页例4及做一做。

教学目标

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

教学重点图形的放大与缩小。

教学难点按一定的比把三角形放大或缩小。

教学准备多媒体课件

自学内容见预习作业

教学预设

一、自学反馈

1、关于图形的放大和缩小,通过自学你获得了哪些知识?

2、关于图形的放大和缩小,你有什么困惑?

3、揭题:这节课我们就一起来研究图形的放大和缩小。

二、关键点拨

1、长方形和正方形的放大和缩小

按2:1画出例4中正方形和长方形放大后的图形。

(1)“按2:1放大”是什么意思?

先让学生说出自己的理解,然后教师说明。

师:按2:1放大,也就是各边放大到原来的2倍。

(2)说一说放大后图形的边长。

原来的边长是3倍,放大后图形的边长是6倍。

(3)画一画。

学生在方格纸上画一画,然后展示学生的作品。

(4)说说你是怎么想的?

(5)放大后的图形和原来的图形相比,有什么相同的地方和不同的地方?

(6)如果把放大后的正方形和长方形的各边按1:3缩小,图形又会发生什么变化?

(7)小结:放大和缩小只改变图形的大小,不改变形状。

2、三角形的放大和缩小。

按2:1画出例4中三角形放大后的图形。

(1)“按2:1放大”是什么意思?

先让学生说出自己的理解,然后教师说明。

师:按2:1放大,也就是各边放大到原来的2倍。

(2)说一说放大后图形的边长。

原来的边长是3倍,放大后图形的边长是6倍。

(3)画一画。

学生在方格纸上画一画,然后展示学生的作品。

(4)说说你是怎么想的?

(5)放大后的图形和原来的图形相比,有什么相同的地方和不同的地方?

(6)如果把放大后的正方形和长方形的各边按1:3缩小,图形又会发生什么变化?

(7)小结:放大和缩小只改变图形的大小,不改变形状。

三、巩固练习

1、课本第58页做一做。

2、课本第61页第1题和第2题。

3、把一个长4厘米、宽1厘米的长方形放大到原来的2倍,它的周长和面积各发生了怎样的变化?

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

比例的应用【第三篇】

(用比例解决问题)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从a地到b地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从a地到b地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

3.比例的应用(比例尺)

教学内容:教科书第6~8页的例4~例6,练习二的第1题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

教学过程:

一、复习

1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

1米=(    )分米=(     )厘米=(      )毫米

1千米=(     )米=(      )厘米

2.什么叫做比?

3.化简下面各比。        12 :8          10厘米:100厘米

2米:140厘米    3米:15千米        16厘米:90千米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

1.教学比例尺的意义。

(1)教学例4。

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离 :实际距离

10厘米 :    10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:

图上距离 :实际距离

10  :  1000

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出:

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1o厘米:1o米,要把后项的米化成厘米后再算出比例尺。

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

(2)巩固练习。

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。

2.教学根据比例尺求图上距离或实际距离。

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

(1)教学例5。

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

“这道题的图上距离是多少?”板书:15

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

15 =    1

x  6000000

指定一名学生到前面求x的值,其他学生在练习本上做。订正后,回答:

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

之后,再回忆一下解答过程。

(2)巩固练习。

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

(3)教学例6。

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

然后让学生求x的值,并说出求解过程,教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

米=(         )厘米         千米=(            )厘米      米=(        )厘米             350000厘米=(             )千米              千米=(           )厘米

1、 独立完成练习二第1题,并订正。

2、 完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

2、正比例和反比例的意义

第一课时

教学内容:p39~41  成正比例的量

教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

教学过程:

一、四顾旧知,复习铺垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,

3小时行驶270千米,4小时行驶360千米,

5小时行驶450千米,6小时行驶540千米,

7小时行驶630千米,8小时行驶720千米……

(1)出示下表,填表

一列火车行驶的时间和路程

时间

路程

填表,思考:在填表中你发现了什么?

时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表,交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价表

数量 1 2 3 4 5 6 7 ……

总价        ……

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(3)看书p39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书p40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、p41做一做

2、p43~44练习七第1~5题。

第二课时

教学内容:p42  成反比例的量

教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

教学难点:利用反比例的意义,正确判断两个量是否成反比例。

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱元,1本;元,2本;元,4本;元6本。

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

2、教学p42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

a、表中有哪两种量?这两种量相关联吗?为什么?

b、水的高度是否随着底面积的变化而变化?怎样变化的?

c、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

d、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:y=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

p45~46练习七第6~11题。

第三课时

教学内容:正比例和反比例的比较

教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。

2、使学生能正确判断正、反比例。

3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。

教学难点:正反比例的联系和区别 。

教学重点:能判断正、反比例。

教学过程:

一、复习:

判断:下面每组中的两个量成什么关系?

1、单价一定,数量和总价。

2、路程一定,速度和时间。

3、正方形的边长和它的面积。

4、时间一定,工效和工作总量。

二、新知:

1、出示课题:

2、教学补充例题

出示表1

路程(千米) 5 10 25 50 100

时间(时) 1 2 5 10 20

表2

速度(千米/时) 100 50 20 10 5

时间(时) 1 2 5 10 20

分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。

总结路程、速度、时间三个量中每两个量之间的比例关系。

速度×时间=路程    =速度   =时间

判断:

(1)速度一定,路程和时间成什么比例?

(2)路程一定,速度和时间成什么比例?

(3)时间一定,路程和速度成什么比例?

3、比较正比例、反比例的关系

正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。

不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。

三、巩固练习

1、做一做

判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?

单价一定,数量和总价—

总价一定,数量和单价—

数量一定,总价和单价—

2.判断下面一些相关联的量成什么比例?为什么?

(1)除数一定,        和       成       比例。

被除数—定,       和       成       比例。

(2)前项一定,       和       成       比例。

(3)后项一定,       和       成       比例。

(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。

比例的应用【第四篇】

教学目标

1.使学生能正确判断应用题中涉及的量成什么比例关系。

2.使学生能利用正、反比例的意义正确解答应用题。

3.培养学生的判断推理能力和分析能力。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学过程

一、复习准备。(课件演示:)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间。

2.路程一定,速度和时间。

3.单价一定,总价和数量。

4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

5.全校学生做操,每行站的人数和站的行数。

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。

教师板书

二、新授教学.

(一)教学例1(课件演示:)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2.利用比例的知识解答。

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长 千米。

2 =140×5

=350

答:两地之间的公路长350千米。

3.怎样检验这道题做得是否正确?

4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答。

70×5÷4

=350÷4

=(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例。

所以两次行驶的_________和_________的_________是相等的。

3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

4 =70×5

答:每小时需要行驶千米。

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行千米,需要几小时到达?

三、课堂小结。

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、课堂练习。(课件演示:)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业 .

1.一台拖拉机2小时耕地公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3.某种型号的钢滚珠,3个重克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计。

教案点评:

本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

探究活动

鱼池有多少条鱼?

活动目的

1.培养学生应用所学知识解决实际问题的能力。

2.培养学生的判断推理能力和分析能力。

活动形式

以小组为单位讨论。

活动题目

养鱼场有很多鱼池,要知道一个鱼池有多少条鱼。渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里。鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方。渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼。为什么?

活动过程

1.学生分小组讨论原因。

2.学生汇报讨论结果。

3.讲述生活中应用比例知识的事例。

参考答案

解:设水池里面共有 条鱼。

=750

答:水池里面共有750条鱼。

比例的应用【第五篇】

教学内容:

教科书第66~67页的例1、例2,练习十八的第1~4题。

教学目的:

使学生学会用比例知识解答比较容易的应用题,提高对正比例和反比例意义的认识。

教学过程:

一、       复习

1.一辆汽车行驶的速度不变,行驶的时间和路程

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

回答:

(1)各有哪三种量

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?

二。新课

教师:我们已经学习过比例、正比例和反比例的意义,还学过解比例。应用这些比例的知识可以解决一些实际问题,今天我们就来学习比例的应用。(板书课题)

1.教学例1

出示例1:一辆汽车两小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前学过的方法解答    140÷2×5=70×5=350(千米)

(2)用比例的知识解答

解:设甲乙两地之间的公路长x千米       140/2=x/5

(3)改变题目的条件和问题,让学生解答。

教师:已知公路长350米,需要行驶多少小时?该怎样解答?

设需要行驶的小时数为x,列出的等式是140/2=350/x

2.教学例2

出示例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?

①         学生用以前学过的方法解答  70×5÷4=350÷4=(千米)

②         这道题你能用比例的知识解答吗?

想一想,题中有哪两种相关联的量?它们成什么比例关系?为什么?

解:设每小时需要行驶x千米   4x=70×5

③如果把这道题的第3个条件和问题改成“已知每小时行驶千米,要求需要多少小时到达?”该怎样解答?

设需要行驶的小时数为x,列出的等式是=70×5

三。巩固练习

1. 做第67页“做一做”的题目。

2. 练习十八的第1~4题

四。小结

今天我们学习的是如何用比例和反比例的知识来解答以前学过的应用题。

创意作业:同桌二人出成正比例的应用题,交换解答批改不明确是否正确请教老师。

课后反思:比例应用于实际,使学生进一步提高对正、反比例的认识。

16 2468326
");