数学实际问题与方程教学设计实用精编8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学实际问题与方程教学设计实用精编8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学实际问题与方程教学设计【第一篇】

一、细心填写:

1、20米是16米的()%,20米比16米多()%;。

16米是20米的()%,16米比20米少()%。

2、完成计划的百分之几=()()。

读了全书的百分之几=()()。

实际比计划节约百分之几=()()。

今年比去年增产百分之几=()()。

二、解决问题:

1、电视机厂五月份计划生产电视机台,结果多生产500台。超产百分之几?

2、电视机厂五月份生产电视机2500台,比原计划多生产500台。超产百分之几?

3、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

4、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

6、鸡的只数比鸭少20%,鸭的.只数比鸡多百分之几?

7、老王花1260元买了一台洗衣机,比促销前便宜了240元。便宜百分之几?

数学实际问题与方程教学设计【第二篇】

各位评委:大家好!

今天我说课的内容是人教版初中数学九年级上册第二十二章、第节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。

(一)教材分析与学生现实分析。

一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

(二)数学新课程标准要求:

人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:。

1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

教学重点、难点及解决措施:

重点:列一元二次方程解实际问题。

难点:发现问题中的等量关系。

教师引导,学生自主探索、合作交流。

(三)教法的确定与学法指导。

我们学校在去年实行了杜郎口中学的三三六的教学模式立体式、大容量、快节奏;自主学习三模块:预习、展示、反馈;课堂展示六环节:预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评。对于每个专题都要经历预习、展示和达标检测三个环节,经过一年的训练,学生们已经有较好的自学能力和小组合作能力,实践表明,学生给学生讲题,同学们会更有兴趣,也更容易接受,学生通过自我展示不但能激发他们的表现欲,还能提高语言表达能力和竞争意识。

我们让各个小组轮流来当课堂“小老师”,以提高他们的`合作水平和对试题的阅读理解能力,同学们和教师也会根据每个“小老师”讲解的具体情况来进行修正和补充,强调重点,总结规律。为了鼓励学生勤于思考,善于发问,我在课堂上引入“奖励分”制度,对于独特解法或有提出创造性问题的同学和小组给予1——3分的奖励。本节课是对一元二次方程应用的基本问题的学习后的探索活动课,在预习课上我已经下发了试题学案,并给每个小组分配了展示任务。学案上我选用了了四道实际问题,要求同学们找出试题特点和关键词语以及易错点,并用硬纸板和铁丝做出相应的试题模型。预习课上学生先做题再合作,同学们之间有充分的交流和讨论。

(四)教学过程分析。

心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:

数学实际问题与方程教学设计【第三篇】

总复习的编排注意知识间的内在联系,便于在复习中进行整理和比较,以加深学生对所学知识的认识。培养学生灵活运用知识解决问题的能力。

教学目标:

1、培养学生用所学的数学知识解决简单的实际问题。

2、进一步发挥学生的想象力。

3、让学生在交流中参与解决问题的全过程,培养学习数学的积极性。

教学重点:培养学生合理利用各种信息解决问题的意识。

教学难点:根据情境图的资源,提出问题和解决问题。

一、基本练习。

二、创设情景。

三、用数学。

四、小结:

1、指名口算:

2、填未知数:

(1)6+=1114-()=10。

讨论:,括号里该填几?怎么想?指名回答。

(2)练习:

9+()=138+()=1512-()=2。

5-()=47-()=1()+7=14。

学生做完后,问是怎样想的。

1、出示书上第108页的第10题。

(1)学生观察,你能提出两个数学问题并解答吗?

(2)同桌先说一说,再全班交流。

学生独自列式。

2、书上第108页第8题生独立完成。

1、书上第109页第11题。

(1)分组讨论,说一说图中讲的是一件什么事情?

(2)引导学生看图,结合文字理解内容。

(3根据问题列式计算,并说说你是怎样算的?

(4)举例说一说日常生活中的有关数学知识方面的问题?

2、思考题:学生先思考,分组讨论,互说想法,然后再指名说一说你是怎样想的?

说一说你的收获?

作业设计:1、课堂作业本。

板书设计:总复习:用数学。

不同角度不同的列式原来有多少?

数学实际问题与方程教学设计【第四篇】

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积。

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法。

1、设(找出未知数,用字母x表示)。

2、找(找出题目中的等量关系)。

3、列(根据等量关系列出方程)。

4、解(运用等式的性质解方程)。

5、验(将解出的结果代入方程检验)。

6、答(完整地写好答话)。

三、巩固练习。

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。

a、解:设梨树为x棵,则苹果树为5x棵。

b、解:设苹果树为x棵,则梨树为5x棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系。

数学实际问题与方程教学设计【第五篇】

知识技能。

1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型。

2.能根据具体问题的实际意义,检验结果是否合理。

过程方法。

经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

情感态度与价值观。

通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

2.教学重点/难点。

教学难点:发现传播问题中的等量关系。

3.教学用具。

制作课件,精编习题。

4.标签。

教学过程。

一、导入新课。

生:审题、设未知数、找等量关系、列方程、解方程,最后答题。

试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型。这一节我们就讨论如何利用一元二次方程解决实际问题。

二、探索新知。

问题情境。

分析。

(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

(4)能否把方程列得更简单,怎样理解?

(5)解方程并得出结论,对比几种方法各有什么特点?

解答。

设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:

1+x+x(1+x)=121。

解方程得x1=10,x2=—12(不合题意舍去)。

因此每轮传染中平均一个人传染了10个人。

思考。

如果按这样的传播速度,三轮传染后有多少人患了流感?

活动方略。

教师提出问题。

学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题。

设计意图。

使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验。

三、例题分析。

解:设每个支干长出x个小分支,则。

1+x+xx=91,即x2+x—90=0。

解得x1=9,x2=—10(不合题意,舍去)。

答:每个支干长出9个小分支。

分析。

(1)两题中有哪些数量关系?

(3)对比两题,它们有什么联系与区别?

活动方略。

教师活动:操作投影,将例题显示,组织学生讨论。

学生活动:合作交流,讨论解答。

设计意图。

进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。

四、当堂训练。

1.生物兴趣小组的学生,将自己分享的“数学实际问题与方程教学设计实用精编8篇”,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()。

(x+1)=(x—1)=182。

(x+1)=(1—x)=182×2。

活动方略。

学生独立思考、独立解题。

教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)。

设计意图。

检查学生对所学知识的掌握情况。

课堂小结。

1、用“传播问题”建立数学模型,并利用它解决一些具体问题。

2。解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答。

板书。

数学实际问题与方程教学设计【第六篇】

今天我说课的内容是人教版初中数学九年级上册第二十二章、第节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。

(一)教材分析与学生现实分析。

一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

(二)数学新课程标准要求:

人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:。

1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

数学实际问题与方程教学设计【第七篇】

教学内容:

教科书p13例9、p14练一练、p16练习三第1~3题。

教学目标:

1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。

教学重点:

掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。

教学难点:

能正确找出应用题中数量间的相等关系。

教学过程:

一、谈话导入。

今天研究一个与颐和园有关的数学问题。

二、学习新知。

1.p13例9。

(1)指名读题,分析数量关系。

用线段图表示出题目中数量之间的关系吗?

学生尝试画图,集体交流。

根据线段图得到:水面面积+陆地面积=颐和园的占地面积。

启发:这大题目中有两个未知数,我们设谁为x呢?

(2)列方程并解方程。

指名学生列出方程,鼓励学生独立求解。

如果用x表示陆地面积,那么可以怎样表示水面面积呢?

追问:这道题可以怎样检验?

检验:a、+=290(公顷)b、=3。

(3)观察我们今天学习的'方程,与前面的有什么不同?

小结:像这样含有两个未知数的问题我们也可以列方程来解答。

(4)学生独立完成p14练一练第1题。

三、巩固练习。

1.p14练一练第2题。

教师引导学生找出数量关系式。

陆地面积-陆地面积=。

2.解方程。

2x+3x=60。

=12。

100x-x=198。

3.根据线段图列出方程。

4.解决实际问题:(列方程解)。

(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

在做这道题时你认为应注意什么呢?

四、全课小结。

在解答这一类应用题时应注意什么?

五、课堂作业。

p16练习三第2-3题。

数学实际问题与方程教学设计【第八篇】

《列方程解稍复杂的百分数实际问题(一)》这节课是在学生已经学过稍复杂的分数实际问题和认识百分数的基础上教学的,学生已经有了列方程解决实际问题和稍复杂的分数实际问题解答经验及解题方法。本课教学目标是:1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

在教学本课时我以复习题引出例题。复习题:朝阳小学美术组有36人,女生人数是男生人数的五分之四。美术组男、女生各有多少人?让学生列式计算,交流是怎样想的?这里学生有两种种解法:(1)用方程;(2)按比例分配。针对方程的解法和学生一同回忆用方程解答时关键是什么?要注意写什么?这时我把复习题的“女生人数是男生人数的五分之四”这个条件改成“女生人数是男生人数的80%”,让学生自己解答,通过这样的知识迁移学生很轻松的解决了问题。引导学生进行了两次比较,第一次引导学生比较几种解答,使学生体会到用方程解答的好处;第二次引导学会上比较复习题一例题在题目及解答上的异同,使学生对于知识的学习成系统。在巩固练习的安排上我设计了这样一题:梨树和桃树一共有96棵,根据下面的条件算出梨树和桃树各多少棵?(1)桃树的棵数是梨树的5倍。(2)梨树的棵数是桃树的五分之一。(3)梨树的棵数是桃树的20%。引导学生将此题的三个条件相比较,沟通百分数问题和倍数、分数问题的联系。

本课在教学中对于学生出现的生成资源我处理的较好的。教学中我比较注重引导学生用方程解答,但在方法的多样化没能给学生充分的时间交流,还要处理好解法多样化与优化的关系。

一节课下来,觉得自己上的比较累,学生学习效果也不那么满意。

这个例题是用方程解决“已知一个数量,以及一个数量比另一数量多(少)百分之几,求另一个数量(单位”1”)”的实际问题。

例题教学,出示例题后,先让学生尝试画线段图,在交流中完善精致化。先画什么?(单位1,九月份用水量)再画什么?十月份用水量这条线段画多长?这个问题的目的是引导学生理解“比九月份节约20%”:节约的用水量是九月份的2/10或1/5。学生修改线段图的过程实际也是进一步理解题意的过程。

课堂上老师最累和学生最怕是找出适合列方程的数量关系式。引导学生观察线段图中各线段,在各线段的关系中寻找等量关系,仍有部分学生有困难。学生提到九月份的用水量+十月份比九月份节约的用水量=十月份的用水量,九月份的用水量-节约的用水量=十月份的用水量,九月份的用水量-十月份的用水量=节约的用水量。我没有引导学生及时选择合适的,而是让学生自己选择适当的进行列方程,让学生在自己的思考下,尝试中找到适合的等量关系。在全班交流中明确等量关系。

这个环节让我真切感受到部分学生对于寻找数量关系有困难。猜测着可能他们不清楚题目中的数量,也可能不会选择哪个数量关系式才适合列方程,还可能画线段图本身对他来说就是很困难的。到底平时作业不可能每道题目去画线段图(而且学生画线段图能力参差不齐),所以对部分学生来说找出合适的数量关系式困难啊。

正确检验也是本课的难点,不是所有的学生掌握,也没有要求学生全部理解。其中检验是否如何“比九月份节约20%”这个条件,这种检验方法掌握的学生不多。

后来,从小学数学教学网上看到有老师这样设计了准备题:

440×80%   440÷80%   440×(1-80%)。

与其他老师有同感,觉得这样的填空设计非常富于启发性。

22 2989730
");