鸡兔同笼教学设计【汇编5篇】
【导言】此例“鸡兔同笼教学设计【汇编5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《鸡兔同笼》优秀教学设计【第一篇】
复习目标:
通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
复习重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
复习难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:
分析、引导
学法:
自主探究
课前准备:多媒体。
教学过程:
一、定向导学:2分钟
1、板书课题
2、复习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、方法归类:8分
1、填空:
一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。
一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。
鸡兔共五只,腿有( )条。
2、谁记得解决这类问题的方法呢?
学生回答
3、了解抬脚法
笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,
有94只脚。鸡和兔各有几只?
古人的算法可以用下图表示:
头… 35 脚减半 35 下减上 35 上减下 23 …鸡
脚… 94 47 12 12 …兔
三、解决问题:10分
(1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?
(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?
(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )
分。
(4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?
四、小结检测:20分钟
1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?
2、检测:
a、问答:
(1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。
b、解决问题
(1)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?
(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)
(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
鸡兔同笼教案【第二篇】
教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
重点难点
用假设法和列方程的方法解决“鸡兔同笼”问题。
教学指导
1、要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。
2、要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
3、要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
4、要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。
知识结构
第1课时 鸡兔同笼(1)
教学内容
教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。
教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
重点难点
用多种方法解决“鸡兔同笼”问题。
教学准备
课件、列表法的表格卡片。
情景导入
1、师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话是什么意思呢?抽生回答。
2、这类题我们把它叫做什么问题好呢?板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?
新课讲授
(一)出示情景,获取信息
1、出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”
2、我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。
(二)列表法
1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?
2、那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?
3、现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。
4、我们把这种方法叫做列表法。
(三)直观画图法
1、师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?
2、生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿,这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。问:你们听懂他的方法吗?请同学们在练习本上画一画。
3、生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿,这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。
师:画图的方法非常便于观察、非常容易理解。
4、你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?
生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。
5、是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。
(四)思考交流你还能用什么办法来解决这个问题呢?
学生讨论后交流。
A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)
①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?
②与实际的腿数不符,腿的条数少算了多少条?
③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?
④少算的10条腿是把多少只兔当成了鸡来算?
⑤鸡的只数怎么算?
B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)
要用列方程的方法就必须找到等量关系式。
通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。
小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)
(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?
课堂作业
完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。
课堂小结
通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。
课后作业
1、完成教材第106页练习二十四第1~3题。
2、完成练习册本课时的练习。
鸡兔同笼教案【第三篇】
学情分析:
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
教学目标:
1、知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
教学过程:
一、以史激趣,导入新课:
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
二、独立探索,构建新知:
(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
鸡兔同笼教案【第四篇】
[教学目标]
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
[教学重、难点]
通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
[教学过程]
一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。
1、小组活动
2、交流方法
3、
二、做一做
独立完成第1—3题,并交流解决的方法。
第4题的答案有多种,启发学生找出不同的答案。
讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。
鸡兔同笼教学设计理念 鸡兔同笼教学设计人教版【第五篇】
鸡兔同笼
温洋洋
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和方程解法的一般性。
3、在学习鸡兔同笼的题目中构建解决这类问题的数学模型,并且能将其应用到生活中去解决实际问题。教学重点:
用假设法解决“鸡兔同笼”问题。
教学难点:
用方程的方法解答问题,特别是如何解答方程。
教学具准备:课件 教学过程:
一、情景引入,导出课题
1)师:同学们,鸡和兔大家熟悉吗?它们有几只脚呢?
生:鸡有两条腿,兔有四条腿。
师:对了,如果把鸡和兔关在一个笼子里,现在老师告诉你鸡和兔的只数,你能求出它共有多少条腿吗?(能)出示课件。
师:现在有四只鸡和三只兔在同一个笼子,一共有多少条腿?你怎么算出来的呢? 生:二十只脚。
2)师:鸡和兔在一起的时候,兔发现鸡用两只脚走路,很有意思,它也想学鸡走路,可怎么学呢?
师:这时候兔子的腿可以看成几条了?(两条)鸡是几条呢?(两条)我们可以把笼子里的动物都看成是什么了?(鸡)这时候有几只鸡了(7 只)
师:那现在地上有多少条腿??(14)实际有多少条腿呢?与实际相比这个腿发生了什么变化呢? 师:为什么会少6条腿呢?
生:每只兔子抬起了两条腿。三只兔子就少了6条腿。
3)师:兔在学鸡走路的过程中,鸡也觉得兔子走路很有意思,也想学学兔子走路,怎么办呢?
师:那这样可以把鸡的腿看成几条了(4条),这时候可以把笼子里的动物都看成什么了?(兔子)几只兔子。
出示课件。
师:算算现在地上有几条腿呢?(28)实际上有几条呢,与实际相比腿数发生了什么变化呢?
师:为什么会多了8条腿呢?
师:鸡和兔关在一个笼子里的问题,是一个非常著名的数学问题,早在1500多年前,我国古人就对这个有了研究,并且还把它记录在了古代的数学名著《孙子算经》里面。今天我们也来研究这个著名的数学问题——鸡兔同笼(板书)。
二、讲解例题,尝试探究 1)出示例题,获取信息
1.“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有22条腿。鸡和兔各有几只?”(课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:
①鸡和兔共8只。②鸡和兔共有22条腿。
③鸡有2条腿。
④兔有4条腿。2)尝试解答。你先试着解答在作业纸上,然后在小组里交流解题的方法。指导学生用猜测法,假设法,方程的方法解答,并且找到或发现学生存在的问题和其他的解题方法。3)全班交流(1)列表法
师:请列表法的同学说说解题方法。(也可老师投影学生说说过程)
1、师:鸡和兔一共是8只,你能不能猜测一下鸡和兔可能各有多少只? 师:这么多种猜测,怎样才能确定同学们猜的准确? 师:我们把这种方法叫做列表法(或猜测验证法)。(板书:列表法)
师:当鸡和兔子的数目比较大时,列表法就不太适用了。你有新的更方便的方法吗
(2)尝试假设法 a、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)22-16=6(条)
师:这6条腿是什么意思?
生:把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,6条腿是少算了兔的腿。兔 6÷2=3(只)
师:为什么要除以2呢?
生:因为每只兔子少算了2条腿,所以就看6里面有几个2就是把几只兔当成了鸡来算,所以6÷2=3就是兔的只数。
鸡 8-3=5(只)
生:用鸡兔的总只数减去兔的只数就是鸡的只数
师:算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×4+5×2=22(只),5+3=8(只)。师:看来做对了,最后写上答语。b、假设全是兔 师:刚才先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?哪位同学愿意来说说? 8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)32-22=10(条)
生:把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,10条腿是多了鸡的腿。鸡 10÷2=5(只)
师:为什么要除以2呢?
生:把鸡当做兔来算一只多算了2条腿,就看10里面有几个2就是把几只鸡当成了兔算,所以10÷2=5就是现在鸡的只数。兔 8-5=3(只)
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)(3)、方程解法
我们今天来学习一种比较简单的方程法
这道题我们可以设兔的知数为x只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-x)只),因为一只兔有4条腿,所以x只兔就共有4x条腿。一只鸡有2只脚,(8-x)只鸡就有2(8-x)只脚。又因为鸡和兔共有22只脚,所以4x+2(8-x)=22 ①
解:设有兔x只,鸡有(8-x)只。
4x+2(8-x)=22
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、巩固练习
1、活动题目:信封里有1角和5角的硬币若干枚,请小组里的一位同学任意取出一些,然后说硬币的数量和钱数。其他同学求1角和五角的硬币各几枚?
2、课件出示“做一做”三道题。
师:这几道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?
师:我们以小组为单位分工合作完成这三道题,用你最喜欢的方法做,比一比哪个小组最先完成,正确率最高。学生独立完成,集体讲评。
四、课后总结
师:你在这节中有什么收获? 师:鸡兔同笼这个题目是一个典型的例子,希望同学们能提炼出解决鸡兔同笼的方法,并且把它应用到实际生活中去,解决生活中的实际问题。
五、布置作业
在这里老师给同学们布置一道稍动脑筋的“鸡兔同笼”类型的题目,留给大家思考。然后和你们的数学老师交流。
下一篇:《草原》教学设计精编4篇