鸡兔同笼教学设计精编5篇

网友 分享 时间:

【前言导读】此篇优秀范文“鸡兔同笼教学设计精编5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

鸡兔同笼教学设计1

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:

从不同的角度分析,掌握解题的`策略与方法。

教学流程:

一、创设情境,明确目标

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5)太少了?(50)多了,(40)少了(45)差不多了,(46)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流

1、出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?

(2)请你们猜一猜将鸡、兔可能是几只?

(3)把你猜的过程给大家说一说

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只

小组4:方程

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

三、适时反思,掌握策略(两题任选其一)

“同学们,鸡兔同笼”

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸

1、课后练习1、2、3(比较不同-----答案是否唯一)

2、通过今天的学习,有什么收获?

鸡兔同笼教学设计2

教学目标:

1.了解鸡兔同笼问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决鸡兔同笼问题,使学生体会假设和代数方法的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:用假设法解决鸡兔同笼问题。

教学具准备:课件。

教学过程:

一、创设情境,激情导入

1.出示原题

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2.理解题意

师:同学们知道这道题的意思吗?请试着说一说。

生:这道题的意思是现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?

师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?

3.揭示课题

师:这就是著名的鸡兔同笼问题,也正是这节课要研究的问题。

二、合作探索,主动构建

1.出示例1

师:为便于研究,我们可先从简单问题入手,把题中的35个头和94只脚分别换成8个头和26只脚,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2.理解题意

师:从上面数,有8个头;从下面数,有26只脚分别是什么意思?

生:从上面数,有8个头是说鸡和兔一共有8只;从下面数,有26只脚是说鸡脚和兔脚数共是26只。

3.探索策略

(1)猜想法

师:鸡和兔各有几只呢?我们不妨猜猜看。

生1:3只兔,5只鸡。

生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。

师:伟大的科学家牛顿曾说:有了大胆的猜想才会有伟大的发明和发现。同学们猜的对不对,不妨验证一下。

生1:一只兔4只脚,3只兔就有12只脚;一只鸡2只脚,5只鸡就有10只脚,一共就是22只脚,看来没猜对。

生2:6只鸡、2只兔一共20只脚,也没猜对;7只鸡、1只兔共18只脚,也不对;5只兔、3只鸡共26只脚,猜对了。

师:在4次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?

生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。

师:看来,我们还有研究新方法的必要。

(3)假设法

①假设全是鸡

师:我们先从表格中右起的第一列,8和0是什么意思?

生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。

师:实际脚的只数是26只,这样就笼子里就多出了10只脚,该怎么办呢?

生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。

师:上面的过程能用算式表示出来吗?请同学们试试看。

(学生试着列算式,请一个学生到黑板上去板演。)

师:孩子们都写完了吗?多聪明啊!这是一个同学写的算式,我们来听听他是怎么想的。

生:(对着自己写的算式说想法)假设笼子里全是鸡,就有28=16只脚,而笼子里实际有26只脚,这样就多出了26-16=10只脚,而1只兔比1只鸡多2只脚,这样就有102=5只兔,鸡的只数就是8-5=3只了。

师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。

师:算出来后,我们还要检验算的对不对,谁愿意口头检验。

生:32+54=26(只),5+3=8(只)。

师:看来做对了,最后写上答语。

②假设全是兔

师:我们再回到表格中,看看左起第一列中的8和0是什么意思?

生:假设笼子里全是兔。

师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。

(学生讨论写算式,然后指名板演。)

师:这是一位同学写的算式,我们来听听他是怎么想的。

生:假设笼子里全是兔,就有48=32只脚,这样笼子里实际的脚数就比假设的脚数少了32-26=6只脚,1只鸡比1只兔少2只脚,这样就有62=3只鸡,也就知道有8-3=5只兔了。

课件演示:假设法 中假设全是兔的情况。

师:在列表的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。

生:假设法。

师:我们都认为猜想法和列表法有局限性,假设法还有局限性吗?

生:(讨论后)用假设法应该没有局限性了。

(4)代数法

师:在解决鸡兔同笼问题时,除了假设法没有局限性外,还有别的也没有局限性的一般方法吗?

生:方程的方法。

师:那么就请同学们用列方程的方法试一试。

(全班尝试,一名学生板演。)

师:我们来听听这个同学的想法。

生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。

师:老师想问你,这里的 4x和2(8-x)分别表示是什么?

生:4x是兔脚的总数,2(8-x)是鸡脚的总数。

师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。

4.小结方法

师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?

生:猜想法,列表法,假设法和代数法。

师:要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?

生1:我选择假设法,假设法比较简便。

生2:我选择代数法,代数法也好理解。

师:下面同学们就用自己喜欢的方法解决这个问题。

三、分层练习,深化认识

1.解决原题

生:先独立完成《孙子算经》中的原题,后相互评议。

师:刚才我们用自己的方法解决了这个问题,那么《孙子算经》中又是怎样解决这个问题的呢?同学们想知道吗?我们一起去看看?(课件演示抬腿法 )同学们古人的解法巧妙吗?如果大家对这种解法感兴趣,课后可以再研究。请同学们想一想,在日常生活中还有哪些情况类似于鸡兔同笼问题?

2.举出实例

生1:买了一些苹果和梨子,告诉苹果和梨子的单价和总数量,还有总的价钱,求苹果和梨分别买了多少千克。

生2:自行车和汽车一共有几辆,一共有多少个轮子,求汽车和自行车分别有几辆。

师:可见生活中类似于鸡兔同笼的问题有很多,这些问题都可用不同的数学方法来解决,课后可用我们喜欢的方法解决这些问题。

3.课堂作业

从第115页做一做中自选1~2道题完成。

鸡兔同笼教学设计3

教学目标:

1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:

从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流

1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?……

(2)请你们猜一猜将鸡、兔可能是几只?(……)

(3)把你猜的过程给大家说一说

(4)板书学生的过程

鸡 1 2 3

兔 4 3 2

腿 18 16 14

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只

小组4:方程

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

三、适时反思,掌握策略(两题任选其一)

“同学们,鸡兔同笼”

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸

1、课后练习1、2、3(比较不同-----答案是否唯一)

2、通过今天的学习,有什么收获?

鸡兔同笼教学设计4

教学内容:

人教版课程标准实验教科书四年级下册第103-105页内容。

教学目标:

1、 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、 尝试用不同的方法解决“鸡兔同笼”问题,

3、 在解决问题的过程中培养学生逻辑推理能力。

教学重点:

尝试用假设法解决“鸡兔同笼”这类问题。

教学过程:

一、课前游戏,导入课题。

二、创设情境,提出问题。

1、出示原题:

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2、理解题意:

师:同学们,你们知道这道题的意思吗?谁愿意试着说一说! 生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?

师:大家同意吗?

(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)

3、揭示课题:

师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

三、自主探索,解决问题

1、(出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2、分析并理解题意:

(1)从上面数,有8个头就是说鸡和兔的头一共有8个。 (也就是说鸡和兔一共有8只。)

(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

(3)问题是什么?(鸡和兔各有多少只?)

3、猜一猜:随学生猜想板书并验证。

4、 介绍列表法:

师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)

小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

5、 介绍假设法:

当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

(2、)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?

小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)

6、介绍孙子算经(抬脚法)

四、课堂练习

课本做一做“龟鹤问题”

五、课堂小结

这节课你学到了什么?

板书设计

鸡兔同笼猜想法 列表法 假设法 抬脚法

教学反思

鸡兔同笼教学设计5

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

教学重点:

理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

教学难点:

理解用假设法的算理并能运用不同的方法解决实际问题。

教学方法:

1、采取直观形象的方式,让学生探讨不同的方法。

2、适当把握教学要求。

教学过程:

一、历史激趣,导入新课

今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)

结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的`学习热情。

二、探究交流,尝试解决问题。

1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

让学生理解:

①鸡和兔共8只。

②鸡和兔共有26条腿。

③鸡有2条腿。

④兔有4条腿。(出示)

3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

22 678245
");