《鸡兔同笼》教学设计精编5篇
【导言】此例“《鸡兔同笼》教学设计精编5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《鸡兔同笼》教学设计1
教材分析
鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。
设计理念
《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
教学思路
(1)教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。
(2)注重体现解决“鸡兔同笼”问题的不同思路和方法。
(3)让学生进一步体会到这类问题在日常生活中的应用。
学情分析
四年级的学生,他们已具备解决鸡兔同笼问题的能力,能够理解此类问题题意,初步接触多种解题策略,会一些基本的解决数学问题的方法。
教学目标
1、知识与技能目标:通过学习,让学生掌握用图示法、假设法、列方程法等解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。
2、过程与方法目标:学会在学习中进行尝试、比较、分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。
3、情感与价值目标:体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣;感受古代数学问题的趣味性,了解我国古代数学研究成果。
4、数学思考与问题解决:经历解决问题的过程,体验分析解决问题的方法和途经。
教学重、难点
教学重点:尝试用不同的方法解决"鸡兔同笼"问题。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教学内容:人教版小学四年级数学下册第103—105页
创设游戏,提出问题
师:同学们,今天让我们一起来学习中国古代三大数学趣味题之一,“鸡兔同笼”。下面,先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:
师:一只鸡。
生:一只鸡,一个头,两只脚。
师:一只鸡和一只兔。
生:一只鸡和一只兔,两个头,6只脚。
……
师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?
……
师:下面,我们来看看怎样解决这类问题的。
设计意图:创设游戏情境,很自然地引入课题。
出示问题,学习模式
已知:鸡和兔共有5个头,16只脚。
问题:鸡和兔各有几只?
画图法:
结合教材,生自主用画图法理解完成。
列表法(枚举法):
一一列举出鸡有0到5只及兔有5到0只时的脚数。
文字说明:
1、画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。
2、列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;假设3只鸡,2只兔,那么共有14只脚,也不符合条件;假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。
设计意图:数形结合,以画促思,更好地帮助学生理解题意,同时激发学生学习兴趣。
例题讲解
那现在我把数量增加一点点,你们再来算一下?(出示例1)
例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
1、尝试与猜想(分小组合作,活动后汇报、交流)
四人小组,仿照引例中的按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。
画图法:
8个头,26只脚
兔有()只,鸡有()只。
列表法(枚举法):
兔有()只,鸡有()只
经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和总结规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。
2、假设与探究
假设全是鸡
师:突然传来一阵鞭炮声,兔子们吓得全都用前面两只脚捂住耳朵,站立了起来。这时,兔子和鸡一样只有两只脚站在地上。同学们,听到这里,你想到了什么?你能列式解决这个问题吗?
(小组合作探究,师生再交流)
生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。
师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?
生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。
师:“10÷2=5”式中的10表示什么?2表示什么?
生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,
10÷2表示兔子的数量。
师板书:假设全是鸡:
脚的总数:8×2=16(只脚)
少了的脚数:26-16=10(只脚)
一只兔比一只鸡多的脚数:4-2=2(只脚)
兔子:10÷2=5(只)
鸡:8-5=3(只)
师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2(4-2=2)就可以算出兔子的数量了。
假设全是兔
师:鞭炮声停了,兔子们都把前脚放回到地上,这时所有的鸡看到兔子被鞭炮声吓倒,都笑得站不稳,用两只翅膀撑到地上,变成了鸡好像也有4只脚的样子。你又想到了什么?
(小组合作探究,师生再交流)
生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的'个数有6÷2=3(只),兔的个数有8-3=5(只)。
师板书:假设全是兔:
脚的总数:8×4=32(只脚)
多了的脚数:32-26=6(只脚)
一只兔比一只鸡多的脚数:4-2=2(只脚)
鸡:6÷2=3(只)
兔子:8-3=5(只)
师:同学们说得太好了!我们可以把刚才的这两种解决问题的方法称为“假设法”——假设怎么样,然后怎么样。经过这两道题的观察和分析,我们不难发现,假设全是鸡,就会先求出兔的只数;假设全是兔,就会先求出鸡的只数。
设计意图:拟人化的比喻,让学生兴趣盎然。
渗透文化,激发情感
师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。
(独立完成后让学生交流,并进行板书汇报、)
师:对了,这道题的意思就是:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?同学们都做得很好,板书的两位同学做得更加精彩。
试想:古代的人又是怎样解决这类问题的呢?同学们,还有不同的解决方法吗?
设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。
畅谈收获
师:今天的课堂学习有趣吗?大家有哪些收获?
生1:……
生2:……
……
师:今天,我们通过了小组合作、自主探究。学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。
设计意图:
巩固解决“鸡兔同笼”问题的基本方法,了解古时候的解法,使学生对我国的古代文化产生浓厚的兴趣,最后的小结梳理一下几种方法,引导学生反思学过的方法,为以后的学习奠定基础。
课后反思:
在上这节课之前,我已经预想到了学生理解方面可能会存在偏差,同课室同事谈到往届学生对鸡兔同笼这类问题的解决途径很是模糊。我有意识细琢磨了一下课堂课堂会出现的情况。于是,课堂上先游戏引导,再通过画图、列表法的展示,学生们一下子眼界开阔,思路瞬间明朗化,直到后面的假设法的出现,学生对鸡兔同笼问题都不难理解了。假设法作为一种基本方法,给学生讲通讲透,能够做到举一反三解决此类问题就足够的。本计划课堂上渗透用方程方法解决问题,由于四年级学生未接触方程和课堂时间关系,未提及这一方法,希望学生们在后续的学习过程中逐步拓展更多的解决途经。
三人行,必有我师焉。以上这5篇《鸡兔同笼》教学设计是来自于山草香的鸡兔同笼解题方法的相关范文,希望能有给予您一定的启发。
鸡兔同笼教学设计2
教学内容
人教版四年级下册第九单元数学广角“鸡兔同笼”。(第103页例1)
教学目标
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
教学重点
用画图法和列表法解决相关的实际问题。
教学难点
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
教学准备
课件。
教学流程
(一)问题引入,揭示课题。
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的。数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知。
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
《鸡兔同笼》教学设计3
教学目标:
1、了解"鸡兔同笼"问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决"鸡兔同笼"问题,使学生体会假设和代数方法的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决"鸡兔同笼"问题。
教学具准备:
课件。
教学过程:
课前谈话:你知道12生肖里都有哪些小动物?
课件展示兔子、鸡
师:从这里你能知道哪些数学信息?
一、直接导入
师:在我国古代数学名著《孙子算经》中,关于鸡和兔还记载了这样一道有趣的数学题。
课件展示。
师:这道题目是什么意思呢?
指名学生解释。教师课件展示题目意思。
师:今天我们就来学习--鸡兔同笼的问题。你能解决这个问题吗?
二、深入研究
1、化繁为简
师:这个问题有点麻烦,数据较大,当我们面对一些比较复杂的问题时,我们往往可以从一些简单的问题入手。
教师课件展示简单题目。学生齐读题目。
2、教师介绍列表法。
师:你觉得我们可以怎样解决这个问题?
生预计:采用列表法猜测。
师:大家能听懂他的意思吗?教师课件展示列表法。老师给大家准备了这样一份表格。请同桌合作,一起把这份表格填写完整。
集体交流反馈。
师:回到我们古代的那道数学题,用这样的。办法能解决吗?有什么问题吗?
生预设:数据太大,列举起来很麻烦。
师小结:看来用列表法来思考,过程比较麻烦,而且解题效率不高。
3、重点研究假设法和列方程的解法。
师:还有其他方法吗?请自己独立思考。然后四人小组进行交流。
四人小组交流,集体交流反馈。
(1)假设法:
师:把你的方法介绍一下。
生预设:把它全部当成是鸡,每只鸡有2条腿,这样就有16条腿,但总共有26条腿,少了10条。因为。(学生会有困难)
师:当我们在思考遇到困难时,我们也可以借助画图的办法来解决。(教师板演)
边画图边列式。
2×8=16只
26-16=10只
4-2=2只
10÷2=5只
师:同桌两人说一说,可以怎样思考。
再次指名说。
师:是不是只能这样假设?如果假设全部是兔子,会出现怎样的情况?
生预设:脚的只数会缺出来。
师:为什么会缺出来?
生预设:因为一只兔子有四只脚,而一只鸡只有二只脚。能不能用算式表示出来。
(2)列方程解题
师:可以考虑用方程解题吗?
我们可以怎么设?
生预设:可以设鸡为X只。
师追问:那么兔子呢?生预设:8-X只
我们又该怎样列方程呢?
指名学生列方程。
师:是不是只能设鸡为X呢?
生预设:不是。
师追问:还可以怎么设?
生预设:设兔子有X只,那么鸡就有8-X只
师:请同学生自己在草稿本上试一试。
集体交流反馈。
4、解决古代问题。
师:回到之前的那道题目,能不能用你喜欢的方法算一算鸡和兔各有几只?
学生独立尝试,集体交流反馈。
师:知道古人是怎样解决这个问题的吗?
自学课本第114页。
师:你知道古人是怎么想的吗?
5、回顾小结。
师:刚才我们用了哪些办法来解决这个问题?
生预设:猜测法,假设法,列方程解题,作图法。
三、巩固练习。
1、龟鹤问题。
2、自行车和三轮车
鸡兔同笼教学设计4
教学目标:
1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。
教学重点:
明确鸡兔同笼问题数量关系。
教学难点:
初步形成解决此类问题的一般性。
教学过程
一、历史激趣,导入新课(3分)
导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?
这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)
师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。
设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
二、合作探究,构建新知(15分)
1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?
请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?
2、先猜一猜,可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。
3、独立思考:
(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。
鸡兔可能各有多少只?你想怎样解决这个问题呢?
找几名同学说一说解决的办法。
同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。
设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。
4、学生独立完成,教师巡视。
5、学生汇报:
1)、(假如有采用逐一列表法的`)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)
还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。
鸡兔同笼教学设计5
教学内容:
人教版课程标准实验教科书四年级下册第103-105页内容。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题。
3、在解决问题的过程中培养学生逻辑推理能力。
教学重点:
尝试用假设法解决“鸡兔同笼”这类问题。
教学过程:
一、课前游戏,导入课题。
二、创设情境,提出问题。
1、出示原题:
师:同学们,我们国家有着几千年的`悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!
(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
2、理解题意:
师:同学们,你们知道这道题的意思吗?谁愿意试着说一说!生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?
师:大家同意吗?
(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)
3、揭示课题:
师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。
三、自主探索,解决问题
1、(出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2、分析并理解题意:
(1)从上面数,有8个头就是说鸡和兔的头一共有8个。(也就是说鸡和兔一共有8只。)
(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。
(3)问题是什么?(鸡和兔各有多少只?)
3、猜一猜:随学生猜想板书并验证。
4、介绍列表法:
师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)
小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。
5、介绍假设法:
当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。
(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。
(2、)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?
小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)
6、介绍孙子算经(抬脚法)
四、课堂练习
课本做一做“龟鹤问题”
五、课堂小结
这节课你学到了什么?
板书设计
鸡兔同笼猜想法列表法假设法抬脚法
教学反思
上一篇:《寻隐者不遇》教案精编4篇
下一篇:百家争鸣教案(精编5篇)