相反数精编5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“相反数精编5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
相反数1
教学目标1、知识与技能:初步理解绝对值的概念,理解绝对值的几何意义,会通过画数轴的方法求一个数的绝对值。2、过程与方法:经历将实际问题数学化的过程,感受数学与生活的关系,3、情感、态度与价值观:经历将实际问题数学化的过程,感受数学与生活的联系。进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。教学重点:绝对值的概念。 通过画数轴的方法求一个数的绝对值。教学难点:理解绝对值的几何意义。教学过程:1.课间预习 小明的家在学校西边3km处,小丽的家在学校东边2km处,如下图,我们可以把学校门前的大街想象为数轴,把学校 定为原点, 把小明、小丽两家看成数轴上的两点a、b.
-2
-1
2
1
0
a
-3
b `思考:1、a、b两点离原点的距离各是多少? 2、a、b两点离原点的距离与它们表示的数是正数还是负数有没有关系? 3、在数轴上分别描出下列数所对应的点,并指出它们到原点的距离:
2.自主探究 我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。(absolute value) 例如上图, 表示-3的点a到原点的距离是3,所以-3的绝对值是3, 问: 表示-2点到原点的距离是 ,所以-2的绝对值是 .表示2点到原点的距离是 ,所以2的绝对值是 .表示0到原点的距离是 ,所以0的绝对值是 .重点也也是难点注意:绝对值为正数的数有两个。 例如:绝对值为5的数是+5和-5你做对了吗+和-的绝对值都为提问;绝对值为0的数是 『小试牛刀』1、数轴上与原点的距离为的点有 个,它们分别表示有理数 和 。2、绝对值等于6的数是 。
0
1
2
3
4
5
-1
-2
-3
-4
-5
●
●
●
●
●
a
b
c
d
e例1、说出数轴上a、b、c、d、e各点所表示的数的绝对值 。 例2、求4、0与-的绝对值。分析:解此题应画数轴,在数轴上画出表示4、0、-的点,求出表示4、0、-的点到原点的距离,即是它们的绝对值。 绝对值的符号: 4的绝对值记为|4|, 0的绝对值记为|0|, -的绝对值记为|-|,例2的结论就可以记为:|4|=4,|0|=0,|-|= 例3、比较下列各组数的绝对值的大小。 (1)2与-3 (2)-3与-6 例4、一小球在数轴上来回滚动,如果向右滚动1个单位长度,我们就用+1表示。现小球从表示-2的点处开始滚动,滚动过程记录如下:-,-3,+7,-3,+。问小球最终停在何处?小球共滚动了多少个单位长度? 解答: 『供你尝试』a类1、数轴上 ,叫做这个数的绝对值。2、在数轴上,表示-5的点到原点的距离是 ,则-5的绝对值是 。3、在数轴上,到表示-1的的距离是3的点所表示的数是 4、一个数的绝对值为9,那么这个数是 。5、下列说法:①7的绝对值是7②-7的绝对值是7③绝对值等于7的数是7或-7④绝对值最小的有理数是0。其中正确说法有( )a、1个 b、2个 c、3个 d、4个6、下列说法中正确的是( )a、绝对值小于2的数有三个。 b、绝对值是2的数有二个。c、绝对值是-2的数有一个。d、任何数的绝对值都是正数。b类7、(1)绝对值等于4的数有____个,它们是____ (2)绝对值小于4的整数有_____个,它们是_____ (3)绝对值不大于4的整数有 个,它们是 。(4)绝对值不大于4的负整数有_____个,它们是______ (5)绝对值大于1且小于5的整数有___个,它们是____ c类8、正式乒乓球比赛对所使用乒乓球的重量是有严格规定的。检查5只乒乓球的重量,超过规定重量的毫克数记作正数,不足规定重量的毫克数记作负数,检查结果如下: 请指出哪只乒乓球的质量好一些?你能
第1只
第2只
第3只
第4只
第5只
+25
-15
+40
-5
-20用绝对值的知识进行说明吗?
板书设计
教后感
以上就是差异网为大家带来的5篇《相反数》,希望可以启发您的一些写作思路。
相反数2
本节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正地理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。
在整节课的教学中我觉得做得比较好的地方是:一个操作、三个讨论。
相反数这节课是在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行讲解。我让学生在一张白纸上画数轴,并将数轴沿原点对折,感受互为相反数的两数的对称性。通过对折还比较容易地解决了0的相反数是0这一难点。(因为对折后原点与本身重合。)
本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对0是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后 在我的引导下得出0的相反数是0的结论。
本节课的教学我也觉得有不足的地方。首先是我的普通话讲得不够流利,在表达感情时受到了一定的影响,我以后在这方面会多作锻炼。其次就是我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。
相反数3
一、教材分析与学情分析
《绝对值与相反数》选自义务教育课程标准实验教科书《数学》(苏科版)七年级上册,是初一数学的一个难点,也是重点。本节课是在引入有理数和数轴等基本概念后的又一重要的内容,本节课要求从代数与几何两个角度初步理解绝对值的概念,能求一个数的绝对值。通过应用绝对值解决实际问题,使学生体会绝对值的意义,感受数学在生活中的价值。对于从来没有学习过类似知识的初一学生来说,接受起来比较困难,尤其在理解绝对值的意义方面有一定的难度。但初一学生有思维活跃、富有激情的特点,教学时应充分把握和利用这一特点。
二、教学目标
知识目标:
1.理解有理数的绝对值的意义。
2.会求已知数的绝对值(绝对值符号内不含字母)。
3.会比较两个数的绝对值大小。
能力目标:
1.通过小组交流合作,培养学生协作和探究问题的能力。
2.通过说明的理由,初步了解“推理要有依据”的思想(学生作业和考试时不作
要求)。
情感目标
经历将实际问题数学化的过程,体会数学与生活的关系。
三、教学重点、难点及关键
重点:理解绝对值的意义,会求一个数的绝对值,会比较两个数的绝对值的大小。
难点:理解绝对值的意义,经历将实际生活问题数学化的过程,感受数学与生活的关系。
突破难点的关键:通过实际生活的例子引入绝对值的意义,采用类比的思想,同时安排小组交流与合作,达到突破难点的目的。
四、教法与学法分析
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,对学生不仅要“授之以鱼”,更要“授之以渔”;不仅要“知其然”,而且要使学生“知其所以然”,因此基于本节课的特点我着重采用情景教学与问题教学相结合的教学方法,充分发挥初一学生思维活跃、富有激情的特点,组织学生合作交流,体验学习的全过程,让学生在活动中增长知识、锻炼思维。
五、教学用具
多媒体、纸片(写上自己喜欢的数字)
六、教学过程
(一)、创设情景,导入主题。
师:同学们,你们的家在学校的哪一边?
(学生有的说东边,有的说西边……)
师:同学们,我们从家到学校有没有一定的距离?
生:有。
师:无论你们家在学校的哪个方向,学校和它之间都有一定的距离。同学们再想一想,从你们家坐汽车向东走或向西走是不是都耗油?
生:是。无论向哪个方向走,汽车都耗油。
师:体育课上我们投铅球,你可以在规定的范围内朝任意一个方向投,铅球的着落点和你所投球的地点有没有一定的距离?
生:有。无论投到哪个方向,它们之间都有距离。
师:同学们,以上我们举的例子都是日常生活中出现的量,汽车耗油、投铅球的距离和方向有关系吗?
生:没有。
师:让我们来看一看一个具体的例子。
(教师利用多媒体演示书上的引例。)
1、联系实际生活,学生感觉亲近、熟悉,使学生充分相信日常生活中确实有一些量和方向无关,也是学生产生疑问:“到底什么是绝对值?和上面的例子有什么关系?” 从而为学习新知打下基础。
2、利用多媒体演示,使学生产生学习和探究的兴趣
(二)、探索新知。
师:如果把学校门前的大街看成一条数轴,学校看作原点,1km为一个单位长度,你能将小明家、小丽家和学校的位置在数轴上表示出来吗?动手操作一下。
生:能。(学生动手操作)
师:从数轴上看,那家离学校近?哪家离学校较远?
生:小明家。
师:请同学们在练习本上画一条数轴,并观察表示3的点与原点之间有几个单位长度?
学生画并回答:有3个单位长度。
师:哪一个数表示的点与原点也相距3个单位长度?
生1:-3与原点也相距3个单位长度。
师:刚才这位同学的说法对不对?有什么问题吗?
(多数学生很茫然。)
师:-3和3是两个数,属于代数范畴,而点、原点是几何概念。数与点之间有距离吗?
生:没有。
师:我们应该怎么叙述刚才那句话呢?
生(豁然开朗):表示-3的点与原点相距3个单位长度。
在学习过程中及时解决学生认知模糊点,让学生自己发现,并能运用正确的数学语言叙述。
师:同学们说得非常好!所以我说+3与-3的绝对值相等,+5和-5的绝对值相等(指数轴)。同学们,就刚才我们所讲的内容,你们猜一猜:什么是绝对值呢?大家分组讨论。
培养学生的合作能力和竞争意识。
生1:我认为绝对值是指两个地方之间的距离。
生2:我认为绝对值是指两个点之间的距离。
师:谁能联系数轴再具体说一说?
生2:我认为一个数的绝对值就是数轴上表示这个数的点与原点之间的距离。
师:这位同学说的非常好!你们能靠自己的理解和和你的同桌互相交流一下吗?
(学生积极响应,教师板书绝对值的定义。)
让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。
(三)尝试应用
1、利用绝对值的定义求一个数的绝对值
师:请同学们把你们准备好的纸片拿出来,一个同学把你喜欢的数字读出来,同位的同学说出这个数的绝对值。
(学生积极踊跃,相互提问。)
师:老师也有一题,谁愿意做?
(多媒体展示书上例1,学生口答。教师强调利用数轴来解题和解题步骤。)
2、引入绝对值的表示方法
教师:刚才我们的用文字写下来的方法,是不是有些麻烦?
学生:是!
教师:我教给大家一种很简单的表示方法。
(教师展示绝对值符号“︱︱”以及它的用法。学生认识、模仿、理解。)
师:同学们,现在请你们把自己的纸片交给同桌,由他(她)利用绝对值符号“︱︱”来写出这些数的绝对值,看谁做的又对又快!
(学生们兴奋地写起来,老师巡视。)
通过相互协作,共同交流,尝试应用所新学的知识来解决一些简单的问题,使学生在做题过程中体会成功的愉悦。
(四)巩固练习、归纳小结
师:下面我们共同来解决解决几个问题。
练习:1、书上例2。(学生板演)
2、第25页练一练(1)(2)。(口答)
师:同学们回答的非常正确,说明大家这节课掌握地很好。请同学们谈谈这节课你有什么收获?
(学生畅所欲言,教师适当归纳。)
1、通过练习,进一步巩固所学内容,同时教师也可以检验本节课的教学效果,为后面的教学做好准备。
2、通过提问方式对这堂课进行小结,学生再一次回顾梳理所学知识,
七、课后记
《数学课程标准》强调:“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”因此本课意在让学生主动地参与数学活动,并通过一系列探索性的问题及游戏,让学生在掌握新知的同时,体验成功的乐趣。突出表现在以下两点:
1、由贴近生活的实例引导学生猜想,不仅培养了学生的想象力和探究新知的能力,而且能让学生感到数学在生活中的价值。
2、在检测学生学习的效果时,采用同位之间交流、互相检测的方式,注重学生间的相互评价的运用,更好地激发了学生的学习兴趣,更重要的是培养了学生的创新意识和创造能力。
当然也存在着不尽如人意的地方,如由于前面的情景引入由于时间占用教多,后面的练习略显仓促,希望在以后的教学中注意调整,以期达到最佳的效果。
上1篇:相反数2
下1篇:相反数与绝对值练习
相反数4
教学目标
1.理解有理数的绝对值和相反数的意义。
2.会求已知数的相反数和绝对值。
3.会用绝对值比较两个负数的大小。
4.经历将实际问题数学化的过程,感受数学与生活的关系。
教学过程设计建议(第一课时)
1.情境创设
除课本提供的情境外,还可以根据学生的实际,创设一些类似的情境,如乘车去某地,票价、耗油、行
车时间等均与距离有关,也可以提出一些问题引导学生思考,如小明说他昨天从学校出发沿东西大街
走了3 km,你能在数轴上表示出小明昨天到达的位置吗?
2.探索活动
“议一议”的活动,应引导学生从利用“形(数轴)”比较有理数大小转化为用“数(绝对值)”来比较。
(1)通过两个正数在数轴上的位置比较两个数的大小。可以让学生再多比较几对数的大小,然后归纳出两个正数的大小与这两个正数的绝对值的大小关系;
(2)用相同的方法归纳出两个负数的大小与这两个负数的绝对值的大小关系;
(3)在经历了(1)、(2)之后,引导学生归纳,得出用绝对值比较有理数大小的方法。
3.例题教学
例2的第(1)小题是两个正数的大小比较;第(2)小题是两个负数的大小比较,在比较一3与一6的大小时,可让学生再次观察温度计上的刻度,借助“一6℃比一3℃冷”的生活经验,认识两个负数的大小与这两个负数的绝对值的大小关系。
教学过程设计建议(第二课时)
1.情境创设
数轴上点a在原点的左边,点b在原点的右边,并且点a与点b到原点的距离相同。根据小明、小丽的观察发现,讨论5与一5的关系。如:
小明、小丽的观察结论正确吗?
你能说得比小明、小丽更完整一些吗?
此外,还可以设计一些距离相同但方向相反的实际问题,引入互为相反数的概念。
2.探索活动
(1)给出相反数的描述性定义后,要让学生大量举例以巩固概念。
(2)围绕“只有符号不同”展开讨论,让学生充
分发表看法。搞清它的意义是判断两个数是否互为相反数的需要,要及时肯定学生中的较好的解释,如:
“两个数的符号不同,绝对值相等。”
“除0以外,绝对值相等的数有两个,一个是正数,一个是负数,它们仅仅是符号不同。”
“写已知数的相反数,只要在这个数的前面添一个负号。”
“有理数由符号和绝对值两部分组成,如果改变有理数的符号,那么数轴上表示有理数的点就从原点的一侧变到另一侧。”
(3)通过“议一议”,归纳出一个数的绝对值与这个数本身或它的相反数的关系。需要注意的是,在写一个数的绝对值时,要紧扣课本第27页上的结论,要求学生首先关注对该数的判断:是正数还是 负数;然后再选择法则:正数该如何,负数该如何,0该如何;最后给出结果。否则今后极易发生这样的错误:|a|=a,|-a|=a.
3.例题教学
例4的解答中标注的理由,例5的卡通人旁白,
都只是为了强调本节课的重要结论和相反数的定义,渗透“推理要有依据”,学生作业和考试时不作要求。
上1篇:相反数与绝对值练习
下1篇:没有了
相反数5
学习目标
1.使学生能说出相反数的意义
2.使学生能求出已知数的相反数
3.使学生能根据相反数的意思进行化简
学习过程
情景创设
回忆上节课的情境,小明从学校出发沿东西大街走了千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。
观察a,b两点位置及共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?
‐5与5,‐与,‐34 与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)
规定0的相反数是0
想一想:你能举出互为相反数的例子吗?
例题精讲
例1
例2
试一试: 化简―[―(+)]
想一想:
请同学们仔细观察这五个等式,它们的符号变化有什么规律?
把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正。
练一练:填空
(1)-2的相反数是 ,
与 互为相反数,
相反数是其本身的数是 ;
(2)-(+7)= ,
-(-7)= ,
-[+(-7)]= ,
-[-(-7)]= ;
(3)判断下列语句,正确的是 .
① ―5 是相反数;
② ―5 与 +3 互为相反数;
③ ―5 是 5 的相反数;
④ ―5 和 5 互为相反数;
⑤ 0 的相反数还是 0 .
选择:
(1)下列说法正确的是 ( )
a.正数的绝对值是负数;
b.符号不同的两个数互为相反数;
c.π的相反数是 ―;
d.任何一个有理数都有相反数。
(2)一个数的相反数是非正数,那么这
个数一定是 ( )
a.正数 b.负数 c.零或正数 d.零
画一画:
在数轴上画出表示下列各数以及它们的相反数的点:
动脑筋:
如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?
课后作业
1.判断题
(1) 0没有相反数。 ( )
(2)任何一个有理数的相反数都与原来的符号相反。 ( )
(3)如果一个有理数的相反数是正数,则这个数是负数。 ( )
(4)只有0的相反数是它本身 ( )
(5) 互为相反数的两个数绝对值相等
2.填空题
(1) -(-)= _________; -(+7)= _________;
(2) -的相反数是 ________.
(3) -是________的相反数。
(4)│-│=________;││=________;
-││=_______;-│-│=_______
(5)绝对值等于5的数是_________
(6)相反数等于本身的数是__________
3.化简:
(1) -(-1966)=______ (2) +│-1978│=______(3)+(-1983)=______
(4) -(+1997)=_______ (5) +│+│=______
4、选择题:
(1)在-3、+(-3)、-(-4)、-(+2)中,负数的个数有( )
a、1个 b、2个 c、3个
(2)在+(-2)与-2、-(+1)与+1、-(-4)与+(-4)、
-(+5)与+(-5)、-(-6)与+(+6)、+(+7)与+(-7)
这几对数中,互为相反数的有( )
a、6对 b、5对 c、4对 d、3对
5、在数轴上标出3、-、2、0、 以及它们的相反数。
6、请在数轴上画出表示3、-2、-及它们相反数的点,并分别用a、b、c、d、e、f来表示
(1)把这6个数按从小到大的顺序用<连接起来
(2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?
上一篇:高二英语教案最新4篇
下一篇:小学语文教案精编4篇