《平方差公式》教学设计汇总5篇

网友 分享 时间:

【前言导读】这篇优秀教案“《平方差公式》教学设计汇总5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《平方差公式》教学反思【第一篇】

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:

公式的应用及推广。

教学过程:

一、复习提问

1、(1)用较简单的代数式表示下图纸片的面积。

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形。希望推出公式:

a2-b2=(a+b)(a-b)

2、(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异。

说明:平方差公式的数学表达式在使用上有三个优点:

(1)公式具体,易于理解;

(2)公式的特征也表现得突出,易于初学的人“套用”;

(3)形式简洁。但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。因而也就“欠”明确(如结果不知是谁与谁的平方差)。故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。

3、判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

《平方差公式》教学反思【第二篇】

学生已经掌握了多项式与多项式相乘,但是对于某些特殊的多项式相乘,可以写成公式的形式,直接写出结果,乘法公式应用十分广泛,也是本章重点内容之一。平方差公式是第一个乘法公式,教学时,我是这样引入新课的,先计算下列各题,看谁做的又对又快?

(1)(x+1)(x-1)= _____,

(2)(+2)(-2)=_____,

(3)(2x+1)(2x-1)=____,

(4)(+3z)(-3z)=_____.

激发学生的好胜心并为进一步探索新知搭建好有力的平台,然后我又让学生讨论交流上面几个等式左、右两边各有什么特点,你能用字母表示你发现的规律吗?你能用语言叙述这个规律吗?给学生充分的观察、分析、讨论交流的时间,老师应及时的给与必要的指导、鼓励和由衷的赞美,这一点我做的还很不够,今后要多多注意。然后我有设计了这样一道题:下列多项式乘法中可以用平方差公式计算的是

(1)(x+1)(1+x),

(2)(2x+)(-2x),

(3)(a-b)(-a+b),

(4)(-a-b)(-a+b)

帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

平方差公式教学课件【第三篇】

平方差公式教学课件

教学目的:

1、使学生会推导平方差公式,并掌握公式特征。

2、使学生能正确而熟练地运用平方差公式进行计算。

教学重点:

使学生会推导平方差公式,掌握公式特征,并能正确而熟

练地运用平方差公式进行计算。

教学难点:

掌握平方差公式的特征,并能正确而熟练地运用它进行计算。

教学过程:

一、复习引入

1、复述多项式与多项式的乘法法则

2、计算 (演板)

(1)(a+b)(a-b) (2)(m+n)(m-n)

(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)

3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)

二、新课

1、平方差公式

由上面的运算,再让学生探究

现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗? 引导学生把2m看成a,3n看成b写出结果。

(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

(a + b)(a - b)= a2 - b2

向学生说明:我们把

(a+b)(a-b)=a2- b2 (重点强调公式特征)

叫做平方差公式,也就是:

两个数的和与这两个数的'差等于这两个数的平方差。

3、练习:判断下列式子哪些能用平方差公计算。(小黑板)

(1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)

(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)

2、教学例1

(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)

(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。

(3)具体解题过程:板书,同教材,略

3、教学例2 例3

先引导学生分析后指名学生演板,略

4、练习:课本P110 1(指名演板) 2、(口答)3、演板

三、巩固练习:(小黑板)

1、填空:(1)(x+3)(x-3)=__________ (2)(-1-2x)(2x-1)=______

(3)(-1-2x)(-2x+1)=_____________ (4)(m+n)( )=n2-m2

(5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a2

2、选择题

(1) 下列可以用平方差公式计算的是( )

A、(2a-3b)(-2a+3b) B、(- 4b-3a)(-3a+4b)

C、(a-b)(b-a) D、(2x-y) (2y+x)

(2)下列式子中,计算结果是4x2-9y2的是( )

A、(2x-3y)2 B、(2x+3y)(2x-3y)

C、(-2x+3y)2 D、(3y+2x)(3y-2x)

(3)计算(b+2a)(2a-b)的结果是( )

A、4a2- b2 B、b2- 4a2&

《平方差公式》教学设计【第四篇】

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重 点: 平方差公式的推导和应用

难 点: 理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

12001×1999 2998×1002

导入新课: 计算下列多项式的积。

1x+1x-1 2m+2m-2

32x+12x-1 4x+5yx-5y

结论:两个数的。和与这两个数的差的积,等于这两个数的平方差。

即:a+ba-b=a2-b2

四、精讲精练

例1:运用平方差公式计算:

13x+23x-2 2b+2a2a-b 3-x+2y-x-2y

例2:计算:

1102×98 2y+2y-2-y-1y+5

随堂练习

计算:

1a+b-b+a 2-a-ba-b 33a+2b3a-2b

4a5-b2a5+b2 5a+2b+2ca+2b-2c 6a-ba+ba2+b2

五、小结:a+ba-b=a2-b2

《平方差公式》教学设计【第五篇】

公式法进行因式分解,虽然应用的公式只是三条,但要灵活应用于解题却不容易。逆用平方差公式进行因式分解相对来说还是稍微简单些。

逆用平方差公式进行因式分解关键还是要搞清平方差公式(a+b)(a—b)=a2—b2的结构特点:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。

有了前边学习习近平方差公式为基础,逆用平方差公式进行因式分解只需要转换思维即可。但对学生来说,还是相当困难的。逆用平方差公式进行因式分解的步骤可分三步:

1、写成两项平方、差的形式,即找到相当于公式中a、b的项;

2、按公式写出两项积的形式,即因式分解;

3、两项中能合并同类项的各自合并。

例题及练习的呈现次序尽量本着先易后难的螺旋上升原则。

1、a、b代表单独的数字或字母,如:(1)m2—9(2)16—y2

2、a、b代表单独的数字、字母或只含数字、字母的单项式,如:

4b2—9c2(2)m2n2—25

3、a、b代表多项式,如:(1)(2a+b)2—(a—b)2

—(a+b+c)2+(a—b—c)2

在此要有“整体思想”的意识,注意:+部分的底数作为一个整体相当于a,—部分的底数作为一个整体相当于b,然后再套用公式。

尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题:

1、不会找a、b

2、思维僵化,对于与公式相同或者相似的式子而需要转化的或者多种公式混合使用的式子难以入手,说明灵活运用公式的能力较差,如要将9-25X2化成32-(5X)2然后应用平方差公式这样的题目却无从下手

3、因式分解要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)

因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,相应地对教材内容及教学进度做出调整。

20 1251295
");