《平方根》教案精编3篇
【前言导读】这篇优秀教案“《平方根》教案精编3篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《平方根》教案1
教学设计示例
一.教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个正数的平方根的程序
教学难点:准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,, 等数的平方根,但对于如:2,3, ,的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的'值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求的平方根。
解:用计算器求平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:显示
≈
练习:
求下列正数的算术平方根:
(1)49 ; (2); (3); (4)5 ; (6)260;
(7) ; (8)
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
九、板书设计
《平方根》教案2
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:
了解平方根的概念,求某些非负数的平方根
学习难点:
了解被开方数的非负性;
学〔〕习过程:
一、 学习准备
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32 = ( ) ( )2 = 9
(—3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 = —4
3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与 互为逆运算
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数 有两个平方根,它们互为相反数;
零 有一个平方根,它是零本身;
负数 没有平方根。
交流:(1) 的平方根是什么?
(2)的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
5、平方根的表示方法
一个正数a有两个平方根,它们互为相反数。
正数a的`正的平方根,记作
正数a的负的平方根,记作
这两个平方根合在一起记作
如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数
这里的a表示什么样的数? a是非负数
二、合作探究
1、判断下面的说法是否正确:
1)—5是25的平方根; ( )
2)25的平方根是—5; ( )
3)0的平方根是0 ( )
4)1的平方根是1 ( )
5)(—3)2的平方根是—3 ( )
6) —32的平方根是—3 ( )
2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。
(1) (2) (3) —100 (4) (—4)2
(5) (6) (7) 10 (8) 5
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、检验下面各题中前面的数是不是后面的数的平方根。
(1)12 , 144 ( ) (2) , ( )
(3)102 ,104 ( ) (4)14 ,256 ( )
2、选择题(1) 的平方根是 ( )
A、 B、 C、 D、
(2)因为()2 = 所以( )
A、 是 的平方根。 B、是的3倍。
C、 是 的平方根。 D、不是的平方根。
3、判断下列说法是否正确:
(1)—9的平方根是—3; ( )
(2)49的平方根是7 ; ( )
(3)(—2)2的平方根是 ( )
(4)—1 是 1的平方根; ( )
(5)若X2 = 16 则X = 4 ( )
(6)7的平方根是49。 ( )
4、求下列各数的平方根
1)81 2)0。25 3) 4)(—6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思维拓展:
1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是
2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。
4、一个数x的平方根等于m+1和m—3,则m= 。x= 。
5、若|a—9|+(b—4)=0,则ab的平方根是 。
6、熟背1至20的平方的结果。
7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?
学情分析:3
知识背景:学生已经学会了乘方运算。
能力背景:能借助乘方运算解决其逆运算-----开平方
预测目标:1.能熟练地求一个正数的平方根。
2、知道乘方与开方的联系与区别
四、教具准备: 多媒体
上一篇:《我要的是葫芦》教案优推4篇
下一篇:思想品德教案精编3篇