平方根教案实用【汇集10篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“平方根教案实用【汇集10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

平方根教案【第一篇】

1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;。

3、培养学生的探究能力和归纳问题的能力.

教学难点平方根和算术平方根的联系与区别。

知识重点平方根的概念和求数的平方根。

教学过程(师生活动)设计理念。

思考归纳。

导入概念如果一个数的平方等于9,这个数是多少?

学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.

又如:,则x等于多少呢?

使学生完成课本165页的填表练习.

给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

观察:课本165页中的图

图中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.

注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.

例1:(课本165页的例4)。求下列各数的平方根。

(1)100(2)(3)。

建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.

在等式中求出x的值,为填表做准备.

通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.

教学中可以引导学生通过查阅资料等方式,了解平方根产。

生发展的过程.(通常称为平方根.在研究有关n次方根的问题。

时,为使各次方根的说法协调起见,常采用二次方根的说法.

3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。

通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.

讨论归纳。

深化概念按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.

根据上面讨论得出的结果填课本166页的表.

一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.

引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……。

思考:表示什么意思,这里的x可取什么样的数呢?

而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的`认识.也是平方根概念的进一步深化.

体验分类思想,巩固平方根概念.

加深对符号意义的理解和对平方根概念的灵活应用.

测试学生对平方根概念的掌握情况.

应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。

-64、0,,

如果有要用平方根的符号来表示。

例3:课本第166页的例5,求下列各式的值。

(1),(2)-,(3)。

(4),

建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.

思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。

被开方数不是完全平方数时,可用计算器求出它的近似值。

练习巩固课本第167页的练习。

小结:

1、什么叫做一个数的平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

小结与作业。

布置作业教科书第167页习题第3、4、7、8、11、12题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。

平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.

2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.

平方根教案【第二篇】

学科:数学年级:七年级审核:

内容:沪科版七下平方根(1)课型:新授时间:

学习目标:

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

学习重点:了解平方根的概念,求某些非负数的平方根。

学习难点:了解被开方数的非负性;

学习过程:

一、学习准备。

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32=()()2=9。

(-3)2=()()2=。

()2=()()2=0。

()2=()。

02=()()2=-4。

3、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数。

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果x2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与互为逆运算。

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数有两个平方根,它们互为相反数;

零有一个平方根,它是零本身;

交流:(1)的平方根是什么?

一个正数a有两个平方根,它们互为相反数.

正数a的正的平方根,记作“”

正数a的负的平方根,记作“”

这两个平方根合在一起记作“”

如果x2=a,那么x=,其中符号“”读作根号,a叫做被开方数。

这里的a表示什么样的数?a是非负数。

二、合作探究。

1、判断下面的说法是否正确:

1).-5是25的平方根;()。

平方根教案【第三篇】

4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。

二.教学重点与难点。

三.教学方法。

启发式。

四.教学手段。

计算器,实物投影仪。

五.教学过程。

练习:求下列各数的平方根:

(1)13;(2)。

在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)。

对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。

平方根教案【第四篇】

1、使学生了解数的平方根的概念和性质。

2、使学生能够根据平方根的定义正确的求出一非负数的平方根。

3、提高学生对数的认识。

教学重点。

教学难点。

教具学具。

投影仪。

教学方法。

讲练结合。

补标小结)。

教学过程(展标施标查标。

教学内容。

教师活动。

学生活动。

一、引入新课。

以正方形的'面积和边长的关系引入平方根的概念。

展标。

投影:

1、已知一正方形面积为4cm2,则它的边长为---------cm。

2、已知一正方形面积为2cm2则它的边长为---------cm。

这两个小题有什么共同特点?

这就是我们今天要来研究的一个新的概念――平方根。

(板书课题)。

投影教学目标。

口答:

2cm。

算不出来。

已知一个数的平方求这个数。

感知目标。

教学过程(展标施标查标补标小结)。

教学内容。

教师活动。

学生活动。

二、施标。

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

平方。

(1)一个正数有几个。

将本文的word文档下载到电脑,方便收藏和打印。

平方根教案【第五篇】

3、培养学生的探究能力和归纳问题的能力。

教学难点平方根和算术平方根的联系与区别。

知识重点平方根的概念和求数的平方根。

教学过程(师生活动)设计理念。

思考归纳。

导入概念如果一个数的平方等于9,这个数是多少?

学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数。注意中括号的作用。

又如:,则x等于多少呢?

使学生完成课本165页的填表练习。

给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根。即:如果=a,那么x叫做a的平方根。

求一个数的平方根的运算,叫做开平方。

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算。

观察:课本165页中的图

图中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质。

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根。

注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数。

例1:(课本165页的例4)。求下列各数的平方根。

(1)100(2)(3)。

建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验。

在等式中求出x的值,为填表做准备。

通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的。印象,为平方根的引入做准备。

教学中可以引导学生通过查阅资料等方式,了解平方根产。

生发展的过程。(通常称为平方根。在研究有关n次方根的问题。

时,为使各次方根的说法协调起见,常采用二次方根的说法。

3表示+3和一3两个数。这种写法学生不太习惯,在以后的教学中宜不断提到。

通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根。这个例题也为后面探讨平方根的特征做好准备。

讨论归纳。

深化概念按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出。

根据上面讨论得出的结果填课本166页的表。

一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点。

引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示。例如……。

思考:表示什么意思,这里的x可取什么样的数呢?

而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识。也是平方根概念的进一步深化。

体验分类思想,巩固平方根概念。

加深对符号意义的理解和对平方根概念的灵活应用。

测试学生对平方根概念的掌握情况。

应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。

-64、0,,

如果有要用平方根的符号来表示。

例3:课本第166页的例5,求下列各式的值。

(1),(2)-,(3)。

(4),

建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系。区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根。

思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。

被开方数不是完全平方数时,可用计算器求出它的近似值。

练习巩固课本第167页的练习。

小结:

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

小结与作业。

布置作业教科书第167页习题第3、4、7、8、11、12题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。

平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了。

2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法。

平方根教案【第六篇】

算术平方根的概念,被开方数越大,对应的算术平方根也越大.。

2.内容解析。

基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.。

二、目标和目标解析。

1.教学目标。

(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.。

(2)会求一些数的算术平方根.。

2.目标解析。

三、教学问题诊断分析。

基于以上分析,本节课的教学难点是:深化对算术平方根的理解.。

四、教学过程设计。

1.创设情境,引入新课。

2.师生互动,学习新知。

师生活动:学生可能很快答出边长为5d.。

追问请说一说,你是怎样算出来的?

师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.。

问题3完成下表:

正方形的面积/d。

追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?

师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.。

追问(2)为什么负数没有算术平方根呢?

师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.。

追问(3)请判断正误:

(1)-5是-25的算术平方根;

(2)6是的算术平方根;

(3)0的算术平方根是0;

(4)0.01是0.1的.算术平方根;

(5)一个正方形的边长就是这个正方形的面积的算术平方根.。

师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.。

设计意图:检验对算术平方根的理解.。

3.例题示范,学会应用。

例1求下列各数的算术平方根:

(1)100;(2);(3)0.0001.。

追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?

例2求下列各式的值.。

(1);(2);(3).。

师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.。

设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.。

4.即时训练,巩固新知。

(1)教科书第41页的练习.。

(2)求的算术平方根.。

5.课堂小结。

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)什么是算术平方根?

(2)如何求一个正数的算术平方根?

(3)什么数才有算术平方根?

设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.。

6.布置作业:

教科书习题6.1第1、2题.。

五、目标检测设计。

1.若是49的算术平方根,则=().。

a.7b.-7c.49d.-49。

设计意图:本题考查学生对算术平方根概念的理解.。

2.说出下列各式的意义,并求它们的值.。

(1);(2);(3);(4).。

设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.。

3.的算术平方根是_____.。

设计意图:本题考查学生对算术平方根概念的全面理解.。

平方根教案【第七篇】

通常车险的计算是需要按照一定的费率来进行的,而机动车商业险的费率系数又由诸多的费率因子来决定,如是否指定驾驶人、驾驶人年龄、驾驶人性别、驾驶人驾龄、行驶区域、平均年行驶里程、投保年度、交通违法记录等等。

2

车险计算器是一种方便的车辆保险费用计算工具,它能详细罗列各项汽车保险金额,车主通过它可以精确地计算出自己投保车险时需要缴纳多少钱,同时还可以看出多种不同投保方式下的价格对比,以及不同的险种组合报价。

平方根教案【第八篇】

1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;。

2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;。

3、培养学生的探究能力和归纳问题的能力.

教学难点平方根和算术平方根的联系与区别。

知识重点平方根的概念和求数的平方根。

教学过程(师生活动)设计理念。

思考归纳。

导入概念如果一个数的平方等于9,这个数是多少?

学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.

又如:,则x等于多少呢?

使学生完成课本165页的填表练习.

给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

观察:课本165页中的图

图中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.

注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.

例1:(课本165页的例4)。求下列各数的平方根。

(1)100(2)(3)。

建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.

在等式中求出x的值,为填表做准备.

通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.

教学中可以引导学生通过查阅资料等方式,了解平方根产。

生发展的过程.(通常称为平方根.在研究有关n次方根的问题。

时,为使各次方根的说法协调起见,常采用二次方根的说法.

3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。

通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.

讨论归纳。

深化概念按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?

建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.

根据上面讨论得出的结果填课本166页的表.

一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.

引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……。

思考:表示什么意思,这里的x可取什么样的数呢?

而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识.也是平方根概念的进一步深化.

体验分类思想,巩固平方根概念.

加深对符号意义的理解和对平方根概念的灵活应用.

应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。

-64、0,,

例3:课本第166页的例5,求下列各式的值。

(1),(2)-,(3)。

(4),

建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.

思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。

被开方数不是完全平方数时,可用计算器求出它的近似值。

练习巩固课本第167页的练习。

小结:

1、什么叫做一个数的平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

小结与作业。

布置作业教科书第167页习题第3、4、7、8、11、12题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。

平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.

2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.

平方根教案【第九篇】

教学内容:

课本第52页。

教学目标:

1.掌握用计算器进行一些稍复杂的小数加、减法的计算方法,能正确进行计算,正确率达到90%以上。

2.体会使用计算器工具进行计算更简单,更快捷,初步学会使用计算器探索一些简单的数学规律。

3.体会数学学习的趣味性和挑战性。

教学重点:

平方根教案【第十篇】

2.会用根号表示一个数的立方根,掌握开立方运算;。

3.培养学生用类比的思想求立方根的运算能力;。

4.由立方与立方根的教学,渗透数学的转化思想;。

5.通过立方根符号的引入体验数学的简洁美.

二、教学重点和难点。

教学难点:会求某些数的立方根.

三、教学方法。

启发式,讲练结合。

四、教学手段。

幻灯片.

五、教学过程。

(一)复习提问。

请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

在同学们回答后,启发学生是否可试着给数的立方根下个定义.

如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)。

用数学式表示为:

若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.

类似于平方根德表示方法,数a的立方根我们用符号来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根.

练习:用根号表示下列各数的立方根:

3.开立方概念:

求一个数的立方根的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的立方根.

例1.求下列各数的立方根:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵()3=,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、、103、这样的正数,有一个正的立方根;像-8、、这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.

(1)正数有一个正的立方根.

(2)负数有一个负的立方根.

(3)0的立方根是0.

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵(-3)3=-27,

(5)∵(102)3=106,

(6)∵(103)3=109,

例3.解方程:

(1)x3=;(2)3(x-4)3-1536=0.

解:(1)x3=。

x=

(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)。

3(x-4)3=1536。

(x-4)3=512。

x-4=8。

x=12.

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由立方根定义去解.

填空练习:

(1)1的平方根是____;立方根为____;算术平方根为____.

(5)的立方根为________.

(6)的平方根为________.

(7)的立方根为________.

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)。

(3)±1和0.(由此题,再复习一道立方根的性质.)。

(4)0,1.(此题有学生可能会忘掉0.)。

(5)-2(此题学生易得出-4的答案,应引导学生将翻译为-8,在求立方根,也有学生将看成得到,讲解时注意)。

(6)(此题首先让学生把计算出来,再求平方根,而且平方根有两个)。

(7)-2.

(8),(此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)。

六、总结。

今天我们主要学习了立方根的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与立方根是今后我们学习中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

七、作业。

教材练习1、2、4.

八、板书设计。

探究活动。

下面就介绍它的巧妙求法.

因为23=8,83=512,就是说当被开方数的末位数是8和2时,立方根的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,立方根的个位数就分别是7和3).

一般地,如果103。

21952,50653,79507,287496,970299.

47 1709721
");