正比例应用题范例精编4篇

网友 分享 时间:

【前言导读】这篇优秀范文“正比例应用题范例精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

正比例应用题1

关键词:探索;能力;一题多解

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)07-121-01

提高学生的探索兴趣,养成探索能力,是提高小学数学教学质量的重要环节。例如在解答百分数应用题时,教师可以把百分数应用题理解成分数中的工程问题,或整数中的工作问题来解答,也可以用比例来解答。这样可以把这三种类型的应用题联系起来,充分发挥学生的思维灵活性,探索性。我就简单地举一道常见的百分数应用题,进行一题多解的绝招。

例:景德镇服装一厂接到一批生产3 200件儿童服装的任务,前5天完成40%,照这样计算,完成这项生产任务一共需要多少天?

一、利用分数应用题中的工程问题进行解答

(1)5÷40%=(天)

(2)1÷(40%÷5)=1÷225=(天)

(3)60%÷(40%÷3)+5= 35÷225+5=(天)

这道题应用工程问题解答时,利用的基本关系是:工作总量÷工作效率=工作时间。

二、利用整数应用题中的工程问题进行解答

(1)3 200÷(3 200×40%÷5)=3 200÷256=(天)

(2)3 200×(1-40%)÷(3 200×40%÷5)+5=1 920÷256+5=(天)

在应用工程问题解答时,利用工程工作总量÷工作效率=工作时间这一层数量关系式。

但工程问题中的工作总量单位“1”,工作效率是一个分率,即工作效率= 1工作时间,而工程问题中的工作总量和工作效率都是一个具体的数量,即工作效率= 工作总量工作时间。通过把工程问题与工作问题中的工作总量与工效进行分析后,使学生研究出现3 200÷(40%÷5)或1+(3 200×40÷5)这样的工作总量与工作效率不对应的误解。

三、采用正比例进行解答:

解:设完成这项生产任务一共要用X天。

(1)40%5=1X

40%X=5

X=

(2)3 200×40%5=3 200X

1 280X=3 200×5

X=

解:设完成剩下的任务还要X天

(3)40%5=1-40%X

40%X=60%×5

=×5

X=3÷

X=

+5=(天)

(4)3 200×40%5= 3 200×(1-40%)X

12 805=1 920X

1 280X=1 920×5

X=

+5=(天)

这道题采用了四种正比例的方法进行分析解答,正比例的意义是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做正比例的量,他们的关系叫做正比例关系。在这道题中,进行计算,说明工效不变,工作总量和工作时间成正比例。并利用这一层关系进行计算,用:工作总量工作时间=工效(一定),这一数量关系来解答,但用正比例解答时,应有工程问题中的工作总量(1),工作效率(一个分率)的对应关系来对比例式,也可以应用工作问题中的工作总量(具体数量),工效(具体数量)的对应关系来对比例式。

正比例应用题2

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天——56台

31天——?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上“正”字,决定用正比例方法做。

解设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页——600本

24页——?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上“反”字,决定用反比例方法做。

解钉成24页一本的练习本,可钉x本。

24x=20×600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解设x天读完。

(6+4)x=6×30

10x=6×30

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解设如果每天多读4页,x天读完。

(6+4)x=6×30

10x=6×30

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了到达乙城,甲城到乙城有多少千米?

解设甲城到乙城有x千米。

3x=105×(3+)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解设剩下的x天可以收割完。

90x=5×54

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

16×42=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=48×15

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

正比例应用题3

本册教材中的比例、圆柱和圆锥、简单的统计(二)都是小学数学的重要内容。首先,认识圆柱和圆锥的特征,掌握圆柱和圆锥的一些计算,既可以为进一步学习其他形体的表面积和体积及其计算打好基础,进一步发展空间观念,也可以增强解决问题的策略和方法,逐步增强学生收集、处理信息的意识和能力。最后学习好比例的知识,不仅可以增强学生用数学方法处理数学问题的能力,而且也使学生获得初步的函数观念,为进一步学习相关知识作初步的准备。因此,让学生认识这些内容的概念,学会应用这些概念、方法和计算解决一些实际问题,是教学的重点。

本册教材编写特点:

1、重视研究图形的特征,鼓励学生猜想和估计,加强操作,进一步发展学生的空间观念。

第十册已经教学过长方体和正方体,它们都是由几个平面图形围成的几何体。本册教学两种新的立体图形:圆柱和圆锥。这两种立体图形都是含有曲面的几何体。教材教学时,同以前各册一样,重视加强学生的操作,发展学生的空间观念。教学每一种形体时,都引导学生先观察形体的特征,然后进行一些实验。教材鼓励学生联系已有知识对新学习的内容先猜一猜或估一估,在猜测或估计的基础上进行实验和推理,培养学生的学习能力。此外,本册教材在联系实际方面也有所加强。一方面在教学形体概念加强联系周围的实物,另一方面适当增加了实践活动和先测量物体再计算表面积或体积的练习题。

2、加强看懂和分析简单统计图的训练,注意要求适当。

本册教材继续加强看懂和分析简单统计图的训练,为此,例题中在统计图后面提出几个问题,让学生看图回答。有的练习题还专门安排看统计图回答问题。考虑到制作简单的统计图对小学生来说并不是很容易的,教材中一方面注意说明制作统计图的一般方法和步骤,另一方面在安排练习时基本上都安排半独立完成的。以免对制作统计图的要求过高。

3、突出比例的概念,加强知识间的联系。

正比例关系和反比例关系,实际上是一种函数关系。修订后的教材中,比例知识趋于简化,教学的重点是正、反比例的概念,用比例知识解应用题只保留一些较简单的。本册教材为了突出比例的概念的应用,作了以下几点改进:⑴把比例尺安排到比例的概念教学之后教学,加强比例尺与比例概念的联系,这样既有助于学生加深理解比例的概念,又便于学生运用比例的知识和解比例的方法来解决有关比例尺的计算问题。 ⑵教学正比例概念之后接着教学反比例概念并增加两个概念的联系和对比。⑶在比例知识解应用题的最后增加了用不同知识解的练习题。通过这样的教学,可以加强整数、分数运算和比例之间的联系,提高学生灵活运用知识解决实际问题的能力。

4、加强数学知识的整理,使所学的数学知识系统化。

本册教材的最后一个单元是总复习,把小学阶段所学的主要内容进行系统的整理和复习,使学生对所学的数学知识得到巩固和加深,计算能力得到进一步提高,更好地达到小学数学教学的目标。本册教材对这一单元的编写作了以下几点改进:⑴把小学的数学内容分为整数和小数、简易方程、分数和百分数、量的计量、几何初步知识、比和比例、简单的统计七部分,依次分别复习。⑵在复习每一部分知识时,注意加强知识间的内在联系。⑶选用适当的方式帮助学生回忆并整理所学的数学基础知识。⑷在练习中既注意基本的训练,又注意适当加强灵活和综合运用知识的练习,以利于进一步提高学生的计算能力和解题能力。

5、继续加强能力的培养。

本册教材继续加强能力的培养,做法与前几册基本相同,另外还结合本册特点加强灵活运用知识和综合运用知识的能力的培养。

⑴培养分析、比较和综合能力。⑵培养抽象、概括能力。⑶培养判断、推理能力。⑷培养迁移类推能力。⑸培养学生思维的灵活性和敏捷性。⑹培养学生综合运用知识解决实际问题的能力。

二、教学目标

1、使学生在经历观察、操作等活动的过程中认识圆柱和圆锥的特征,能正确地判断圆柱和圆锥,理解、掌握圆柱的表面积、圆柱和圆锥体积的计算方法,会正确地进行计算。

2、使学生认识复式折线统计图,了解复式折线统计图的特点和作用,了解复式折线统计图的绘制方法,初步学会用复式折线统计图表示统计的数据,会对复式折线统计图进行简单的分析和判断。

3、使学生理解比例的意义和基本性质,会解比例;认识比例尺,会看比例尺,会进行比例尺的有关计算;理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,理解用比例关系解应用题的方法,学会用比例知识解答比较容易的应用题。

正比例应用题4

优秀的教学方法是保证课堂教学顺利进行的有效手段,精美的教学设计是进行课堂教学成功预设的重要环节。不同的教学内容,不同的教学环节,不同的教学设备,都需要采取不同的教学方法,甚至于同一教学内容,面对不同的学生也应该采取不同的教学方法。应该说,生成几种不同的解题方法是不足为奇的,但我们要考虑到学生实际,学生可能会有几种不同的解法?难点能否突破?我们如何促使学生更好的达成目标?这些都是我们在课前必须要考虑到的。在教学过程中,课堂的生成是多样的,教师应根据教学需要,及时调整教学思路,这样才能为动态生成提供广阔的空间。

例如,创设情境:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?

请同学们想一想:你认为怎么分合理?说一说你的分法。

接着再出示:这筐橘子按3:2应该怎样分?

(1)小组合作(用小棒代替橘子,实际操作)。

(2)记录分配的过程。

(3)各小组汇报:自己的分法。

出示题目:如果有140个橘子,按照3:2又应该怎样分?

小组合作研究,汇报交流、展示。

(1)140÷(3+2)=28(个)

28×2=56(个)28×3=84(个)

(2)140×2/5=56(个)140×3/5=84(个)

140×40%=56(个)140×60%=84(个)

......

预设是生成的前提,生成是预设的结果,在教学过程中,教师根据课前预设的几种方法进行了教学,课堂上学生出乎意料的把按比例分配的问题转化成了百分数应用题,这时教师及时抓住时机注意引导学生对于解决问题的方法和策略进行比较,然后寻找它们的共同点。通过比较学生最后得出按比例分配问题的解决方法,可以利用比例将这类问题转化成分数应用题、平均分问题或者百分数应用题等等,一般转化成分数应用题。然后教师再举出类似的问题让学生练习,让学生不仅学会理解掌握解答这类问题的方法,更在学习的过程中感受到学习数学的方法和乐趣。

二、时时引导学生把已学的知识加以整理、归纳和提炼

为了使学生在解答分数(百分数)或按比例分配应用题时能正确地分析题中的数量关系,使所学的系统知识与技能得到巩固和提高,就要时时引导学生把已学的知识加以整理、归纳和提炼,沟通与新授知识的内在联系,形成知识结构网络,深化对所学知识的理解。在学生学过按比例分配应用题以后,针对学生对此类题的特征、解答方法已掌握的情况,有意识地出示一些习题,以沟通此类题与分数(百分数)应用题的内在联系,从而使学生温故知新,触类旁通,拓展思路。

举例一:1.已知甲、乙两数的比是4:5,那么,甲数是乙的只,乙数是甲的()%,甲数占总数的一份,乙数占总数的()%。女生比男生少8人,六〔2)班共有学生多少人?2.商店运来苹果和梨440千克,已知苹果重量比梨重1/5,商店运来苹果和梨各多少千克?

第l题先把男、女生人数之比转换为男、女生各占总数的(),再根据分数应用题解答方法求出答案。第2题除了用分数方法解答外,还可把"苹果比梨多",转化为苹果和梨的比是6:5,再按比例分配来解答。所以,解答此类题关键是熟悉百分比与分数的内在联系。

百分数的知识在生产、工作和生活中有着广泛的应用,合格率表示合格的产品占产品总数的百分之几,也是小学数字教学的一个重要内容。出勤率是表示实际出勤人数占应出勤人数的百分之几{},我们通常用百分数知识来解决一些简单的实际问题,这些都是属同一类型的,即所得的数是原来我们通常所说的百分数应用题。另一类是由两种数量相比较的,如写的义务教育数学教材对百分数应用题的编排,小麦的出粉率是表示面粉的重量占小麦重量的百分之比,稻谷的出米率是表示米的重量是稻谷重量的百分之比,这些都是有关百分比的一般应用题,甘蔗的出糖率是表示糖的重量是甘蔗重量的百分之几(包含求一百分率的应用题)和求一个数比另一数的百分之几,这类问题要让学生明白所求的百分个数多(/少)百分之几的应用题。(2)求一个数的率就是求所得到物体的数量是原物体数量的百分之几是多少的应用题和这类问题的逆向问题。

举例二:将55千克的化肥,按甲乙丙三块地的面积比5:4:2进行分配,每块地各分得化肥多少千克?请问设什么为X?

题意是把总面积分为11份(5+4+2),题目的问题不能直接设X,但共性是都占有一定的份数,所以,就先求每份的用肥量,即每份的用肥量为X,则甲地为5X,乙地为4X,丙地为2X,三个数据相加为55千克,列成式子为:

5x+4x+2x=11x=55

解得每份的用肥量X=5千克

自然也可求出各地的对应用肥量为25、20、10千克。

假设把总面积看成一个整体,则甲地为这个整体的5/11,乙地为这个整体的4/11,丙地为这个整体的2/11,三个数据相加为55千克,列成式子为:

55*5/11;55*4/11;55*2/11

自然也可求出各地的对应用肥量为25、20、10千克。

三、解比例和比应用题常见错误分析及对策

在解答比和比例应用题时,经常会出现一些错误。分析这些错误,提出对策,有利于在教学中有的放矢进行教学,提高学生解决问题的能力。

1、弄错按比例分配应用题中分配的数量

比如:一块长方形菜地,周长200米,长与宽的比是4:3,这块菜地的面积是多少平方米?

学生往往会把200米当作分配的总数量,没有把周长除以2再进行分配。

教师应该让学生弄清按比例分配的意义,认准题目中谁是分配的总数量,应该把出现的数量进行适当整理,把整理后的数量进行计算。

2、混淆按比例分配与正比例

比如:一种药水用药粉与水按1:200配置而成,800千克水中,应加多少药粉?

学生往往会用800千克当作分配的总量,进行按比例分配,把正比例应用题当作按比例分配来做。正确解法是:设:应加×千克药粉。1:200=×:800。

在教学中,应加强对比练习,两者区别是,题目都给出了一个具体数量和两个数的比,但是要看给出的数量是总量还是部分量,如是总量,就用按比例分配方法,如果是表示两个数量比的其中一个数的量(即部分量),就用正比例方法解。

3、比例尺应用题的单位不清楚

比如:在比例尺是1:6000000的地图上,量得两城间距离是8厘米。两城之间的实际距离大约是多少千米?

在教学中,解题前,教师要引导学生看清已知条件和问题中的单位名称,回忆比例尺的意义,理解求出的结果要进行单位换算。

4、没有间接设未知数

比如:李师傅计划6小时加工3000个零件,实际前2个小时加工了1200个。照这样计算,可以提前几小时完成任务?

学生会设:可以提前×小时完成任务,列式为:3000:×=1200:2,这道题求提前几小时,应该间接设未知数,可以设实际用×小时完成任务,列式为:3000:×=1200:2,求出×=5,再用6-5=1(小时)。

教学时,教师要帮助学生弄清题意,看问题要求的"提前还是总共时间",掌握设未知数的方法,该间接设未知数的就间接设。

5、弄不清特殊数量的对应关系

比如:一根木料,锯6段要10分钟。照这样计算,锯9段要多少分钟?

学生在解题时会把锯的段数和时间对应起来,当成正比例的量,应该是锯木料所用的时间与锯的次数成正比例关系。次数=段数-1。

解这类题,教师要引导学生深刻思考问题,弄清正比例的关系,注意特殊的对应关系和对应数量。

65 1710614
");