正比例函数教学设计【精编4篇】

网友 分享 时间:

【导言】此例“正比例函数教学设计【精编4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

正比例函数【第一篇】

正比例函数教案

知识技能

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

数学思考

1、通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

2、经历运用图形描述函数的过程,初步建立数形结合,体会函数的三种表示方法的相互转换。经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

问题解决

能从数学角度提出问题,运用y= kx中,x、y的关系等知识解决问题。

情感态度

1、结合描点作图培养学生认真细心严谨的学习态度和学习习惯。

2、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

教学重点

探索正比例函数图形的形状,会画正比例函数图象

教学难点

正比例函数图象性质

教学过程安排

活动过程

活动内容和目的

活动1、问题引入

通过“燕鸥飞行路程问题”建立数学模型,理解行程与时间的对应函数关系,为导出正比例函数做铺垫。

活动2、正比例函数概念的学习

通过若具体实例,概括归纳出一类有共性的函数关系表达式,导入正比例函数概念。

活动3、画正比例函数的图象

通过师生共同活动,学会运用描点法画出正比例函数图象

活动4、正比例函数图象特征的探究

通过对若干实例的观察分析、比较、概括归纳出正比例函数图象的特征。

活动5、小结、布置作业

回顾和重现本节重点内容加深本节知识范围的理解,通过巩固性练习尝试运用本节知识解决问题。

教学过程设计

问题与情境

师生行为

设计意图

情境1、

问题

(1)       你知道候鸟吗?它们在每年的迁徙中能飞多远?

(2)       燕鸥的飞行路程与时间之间有什么样的数量关系?

教师用课件展示问题。

让学生在地图上找出芬兰和澳大利亚,并将两处用直线连接,然后思考并解答课本上的问题。

学生自主解决三个问题。

教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程进行了刻画,尽管只是近似的,但它反映了燕鸥的行程与时间的对应规律。

从具体情境入手,使学生认识到数学与现实问题总是密不可分的,人们的需要产生了数学。

路程、速度与时间之间的关系学生较熟悉,当速度一定时,路程是时间的函数,用这些简单的实例不断从现实世界中抽象出数学模型,建立数学关系的方法。

情境2、

问题

(1)课本上有4 个实例,这些实际问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?

教师出示四个实例问题的幻灯片,要求学生(1)能找出变量对应关系表达式(2)能说出表达式中的自变量、自变量的函数

学生自主探究,分组讨论;然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

教师引导学生观察分析上面的五个表达式的共性:都是常数与自变量乘积的形式。

教师口述并在黑板上板书正比例函数的概念。

教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k 是常数,k≠0

通过这些实际问题使学生进一步加深对函数概念的理解,也为导出函数概念做好铺垫。

通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点

情境3、

问题

(1)       我们知道了怎样用解析式表示正比函数能否用图象来表示它呢?

(2)       怎样在直角坐标系中画出正比例函数图象。

(3)       观察、分析图象的特点

(4)       巩固性练习画图象

学生在事先准备好的坐标纸上,用描点法画出y=2x和y=-2x的图象。

教师用超级画板演示。

说明描点后先观察形状,再连线。

对这个问题老师应关注

(1)       组织学生一起对所画图象进行评价。

(2)       和学生一起简要总结主要步骤。

(3)       用画板演示,当x增大时,y也相应地增大。演示描更多个点的情况

学生讨论分析、比较y=2x与y=-2x图象的异同之处,填写所发现的规律

学生独立练习在同一坐标系中画出 图象 ,让学生说明了这两个图象的异同之处

经历探索正比例函数图象形状的过程,体验“列表、描点、(观察形状)、连线”的内涵。

比较异同之处,为后面分析讨论正比例函数图象的特征作准备。

练习画出图象通过多个实例,使学生进一步分析研究后能领悟这一类图象的特点。

情境4、

问题

(1)       从以上作图过程可以发现正比例函数的图象有什么特征。

(2)       经过原点与(1,k)的直线是哪个函数的图象?

教师对画图过程进行巡回指导和个别辅导,学生画完图后请学生回答这两个图象的特点并与上面的特点相比较。

教师用画板演示

学生在老师的引导下概括、归纳出正比例函数图象的特征。

教师板书教科书25页上的正比例函数图象的特征。

对于这个问题教师应重点关注

(1)       学生是否通过对正比例函数解析式观察分析,发现当k>0时函数y与自变量x同号;当k<0时函数y与自变量x异号。

(2)       学生对正比例函数图象观察分析,知道其图象是一个随x增大而增大或减小的直线。

学生讨论左边的问题。

教师注意:(1)提醒学生从解析式入手,探究当x=0时或x=1时,y的值分别是几;(2)正比例函数的图象为什么一定过(0,0)和(1,k)这两点;(3)因为两点确定一条直线,因此,画正比例函数图象时,只须过原点和(1,k)画一条直线即可。

在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生进行了概括、归纳、比较、分析的思维方法的教育。

这里通过对解析式和图象的分析,可使学生明白解析式和图象对正比例函数的刻画各有优势。

了解事物的特征就可以使解决问题来得更简捷一些,不断培养学生分析和解决问题的能力。这里同时让学生加深领会数形结合的思想。

(3)       用你认为最简单的方法画出正比例函数图象(教科书26页练习)。

学生练习用“两点法”画图象,教师巡回辅导,并安排一名学生在黑板上画。

教师应当关注:

(1)       学生画图中是否采用的是“两点法”;

(2)       这两点是否最简单(其中关键是对k的确认)。

完成当堂练习,巩固“两点法”画图象的方法。

情境5

问题

本节课学了哪些内容?你认为最重要的是什么?

布置作业

教科书习题11。2第1、2、6、7题。

学生稍作思考后分组讨论,让3~4名学生回答。

教师应当关注:

(1)       允许学生答案不同,回答结论的不同只会对学生学习更有帮助,应当鼓励;

(2)       最后应达到师生共同小结,明确正比例函数的概念、图象特征的效果

学生独立完成作业,(其中第7题可作为选作题)。

教师批改后注意反馈。

教师应关注:

(1)       学生作图象的规范性;

(2)       不同层次的学生在作业中反映出的问题应及时解决。

让学生参加小结并允许学生答案不同,可以增强学生学习的积极性和主动性,培养他们对所学知识的回顾思考习惯;通过小结也强调了本节课的重点,巩固了学习内容。

对作业中的问题要注意个体分析,布置作业要体现分层要求,有一定弹性。

教学设计说明

本节内容是在学生学习了变量和函数的基本概念基础上进行的。学习了正比例函数在引入一次函数,有利于降低教学难度,使难点分散。学生在理解正比例函数概念、描点画函数图象、利用解析式和图象分析正比例函数性质时来得更加容易。

在教材处理方面,采取:“建立数学模型——导入正比例函数概念——画正比例函数图象——探究正比例函数性质——练习、小结”这样循序渐进的教学流程。

考虑到本节内容概念性较强,采取通过学生熟悉的行程问题来导入正比例函数的概念,学生易于接受。

在教学设计时,注重了学生的尝试和探究,如对正比例函数变量对应方式的辨析,自变量取值范围的讨论,学生列举正比例函数的实例的分析,四个小实例的探究,画图象时的动手尝试,小结时的自我概括和归纳等。

在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,画图象时的示范,对关键之处的启发、点拨和讲解,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。

正比例函数【第二篇】

——义务教育课程标准实验教科书《数学》八年级上册

南昌市实验中学  徐建国一。教学目标

知识技能

学习正比例函数及其图象画法、性质和应用

数学思考

培养学生的观察能力、数形结合能力、探索规律能力、解决实际问题能力

解决问题

利用正比例函数及其图象解决实际问题

情感态度

认识数学知识与实际生活相联,体验学习有价值的数学过程

重点

正比例函数及其图象性质

难点

正比例函数的增减性二。教学准备课件、笔记本电脑、三角板、计算器 三。教学流程

四。教学过程1.复习引入(1)函数(提问)      一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是变量,y是x的函数。   (2)变化过程(解释) (3)问题      汽车以60/千米时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,请先填下表

t/时

1

2

3

4

5

6

s/千米

再写出s关于t的函数关系:                                . 2.问题展示   问题1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在万千米外的澳大利亚发现了它 (一个月按30天计算) . (1)这只百余克重的小鸟大约平均每天飞行多少千米?(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?(4)对这个问题你还能提出什么结论。分析:(1)这只燕鸥大约平均每天飞行的路程不少于

25600÷(30×4+7)≈200(km).     (2)假设这只燕鸥每天飞行的路程为200km,那么它的行程y(单位:千米)就是飞行时间x(单位:天)的函数,函数解析式为

y=200x    (0 x 127).        (3)这只燕鸥飞行1个半月的行程,大约是x=45时的函数y=200x的值,即

y=200×45=9000(km).        (4)略。  3.共同思考      下列问题中变量对应规律可用怎样的函数表示?这些函数有什么共同点?    (1)圆的周长l 随半径r的大小变化而变化?    (2)铁的密度为/cm³,铁块的质量m(单位:g)随它的体积v(单位:cm³)的大小变化而变化;   (3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度t(单位:℃)随冷冻时间t(单位:分)的变化而变化。    可以得出上面问题中的函数分别为:    (1)l=2 r                                   (2)m=(3)h=                                   (4)t=-2t4.归纳定义      一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。5.共同参与请你举出一些实际问题,使问题中的变化规律是正比例函数的形式。6.例题讲解为了研究正比例函数的性质,我们是通过研究正比例函数图象性质而达到的,因此例题是画出正比例函数图象。先给同学们提一个问题:描点法画函数图象的一般步骤是                     、                    、                     .例1.画出下列正比例函数的图象:       (1)y=2x                              (2)y=-2x    解:(1)y=2x①列表:

x

-3

-2

-1

0

1

2

3

y        ②描点:        ③连线:        ⑵y=-2x①列表:

x

-3

-2

-1

0

1

2

3

y        ②描点:        ③连线:通过观察例1中两图象可以发现:两图象都是经过               点的               线,函数y=2x的图象从左向右              ,经过第              象限;函数y=-2x的图象从左向右            ,经过第               象限。7.课堂练习在同一坐标系中,画出下列函数的图象,并对它们进行比较:⑴y= x;                          ⑵y=- x.   设问:通过例题讲解和课堂练习,你认为画正比例函数的图象时,有没有更简单一点的方法?为什么? 8.本课小结一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线,我们称之为直线y=kx,当k>0时,直线y=kx经过三、一象限从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二、四象限从左向右下降,即随着x的增大y反而减小。9.共同探究探究1   两个不同的正比例函数 y=k x (k ≠0)、y=k x (k ≠0) ,k ≠k ,在同一直角坐标系中是否有交点?为什么?探究2   汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,则s关于t的函数为s=60t,请画出此函数的图象。tsl甲l乙探究3   射线l 、l 分别表示甲、乙两名运动员在自行车比赛中所走的路程s与时间t的函数关系,请问甲、乙两名运动员比赛中的速度谁更快?为什么?10.本课作业     (1)练习册~5     (2)完成探究1~3     (3) 练习     (4) 复习巩固1五、数学反思(课后完成)

《正比例函数》教案【第三篇】

一、教学内容:

正比例函数的图象和性质

二、教学目标

(一)知识与能力

1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。

2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。

(二)过程与方法

1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。

2、通过观察、探究、分析、引导学生发现正比例函数的性质。

3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。

(三)情感态度及价值观

培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。

三、教学重点:

正比例函数图象的画法及性质的探索。

四、教学难点:

发现、归纳正比例函数的性质。

五、教法与学法

教法:本节课选用引导学生观察,发现法和探索实践归纳法。本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象), 主动参与到整个教学活动中来,最后发现其性质。

学法指导:教师引导学生观察、发现、归纳的学习方法。

六、教具:三角板、多媒体

七、教学过程。 教学过程:

(1) 温故知新,引入课题。 1、下列函数哪些是正比例函数?

(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2

2、(学生回答完上述问题后提问概念)

一般地,形如y= kx(K≠0)的函数,叫正比例函数,其中K叫做比例系数。

3、画函数图象的一般步骤

(1)列表 (2)描点 (3)连线 学生回答后:

教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?

出示课题

(二)探究正比例函数的图象和性质 例1、画出下列正比例函数的图象。 (1)y=2x(2)y=-2x

解(1)函数y=2x中x 可取任意实数,列表如下: 描点 连线

(2)学生练习画出函数y=-2x的图象。

(3)提出问题

师:观察上面的函数图象,它们的形状相同吗?是什么?一定经过哪些象限和特殊点?

生甲:一条直线

生乙:过原点的直线,y=2x的图象过一、三象限,y=-2x的图象过二、四象限。

师:点评学生后

正比例函数的图是经过原点(0,0)和(1、K)的一条直线。

师:通过前面的探讨,同学们发现画正比例函数图象有更简单的方法吗?为什么?

生乙:过原点画一条直线。

生丙:过原点和(1、K)两点画一条直线。

师:点评后师生共同归纳出一般规律:一般地,正比例函数y= kx (K≠0)的图象过(0,0),(1、K)两点的直线,我把函数y= kx 的'图象叫直线y= kx ,以后画y= kx 图像时通常选取(0,0)和(1、K)两点。

(三)学生动手实践“两点法”画正比例函数图象。

11

(1)y= x (1)y= -x

22

1

y= x

2

y= -

师:比较以上函数,观察它们的图象,思考回答下列问题:

1、图象的位置与K值有何联系?

2、正比例函数中y如何随x的变化而变化?通过研讨,观察、讨论、发现结论:K>0时,y=kx 图象过一、三象限,y随x的增大而增大,k<0时,图象过二、

1

x 2

四象限,y随x的增大而减小。

师:除了从图上看出,还有别的方法得出y随x的变化规律吗? 生:列表过程中

(四)巩固练习

1、用你认为最简单的方法画出下列函数图象。

(1)y= (2) y=-3x

2、正比例函数y=-4x的图象是过( )和( )两点的一条直线,图象过象限,y随x的。

3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。 =1 ><1 ≥1

11

4、下列函数①y=5x ② y=-3x③y= x ④y= -x中,y随x的增大而

23

减小的是 。

5、正比例函数y=(1-2m)xm2-3图象过第二、四限, 求m值。

(五)小结:谈一谈,本节课你有什么收获?(知识上,方法上)学生回答后,出示下列内容。

(六)布置作业

A:课本习题第1题,练习册33页 第3、9 题。 B:课本习题第1,2题。

(七)板书设计:

实践操作正比例函数 分析、发现归纳正巩固练习 图象的画法 比例函数的性质 课堂小结

(八)课后反思:另附

正比例函数教学设计【第四篇】

教学目标

知识与技能:理解正比例函数的意义;识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。过程与方法:通过现实生活中的具体事例引入正比例函数,提高学生运用数学知识解决实际问题的能力。情感态度与价值观:培养学生认真、细心、严谨的学习态度和学习习惯,同时渗透热爱大自然和生活的教育。

教学重点:

识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。教学难点:理解正比例函数的意义。教学设计

(一)、创设情境,引入新知

20xx年7月12日,我国著名运动员刘翔在瑞士洛桑的田径110米栏的决赛中,以秒的成绩打破了尘封13年的世界纪录,为我们中华民族争得了荣誉.

(1)刘翔大约每秒钟跑多少米呢?

刘翔大约每秒钟跑110÷=(米).

(2)刘翔奔跑的路程s(单位:米)与奔跑时间t(单位:秒)之间有什么关系?

假设刘翔每秒奔跑的路程为米,那么他奔跑的路程s(单位:米)就是其奔跑时间t(单位:秒)的函数,函数解析式为s=

(0≤t ≤).

(3)在前5秒,刘翔跑了多少米?

刘翔在前5秒奔跑的路程,大约是t=5时函数s=的值,即s=×5=(米).

教师活动:教师用多媒体呈现问题,学生活动:学生思考并解答。教师重点关注:学生能否顺利写出y与x的函数关系式。注意自变量的取值范围.

设计意图:

通过“刘翔”这一实际情境引入,使学生认识到现实生活和数学密不可分,向学生渗透热爱运动、努力拼搏的精神。同时发展学生从实际问题中提取有用的数学信息,建立数学模型的能力。(二)、观察思考、归纳概念

问题1:

下列问题中的变量对应规律可用怎样的函数表示?请指出函数解析式中的。常数、自变量和自变量的函数.

(1)圆的周长l随半径r的大小变化而变化;

(2)铁的密度为/ cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化。(3)每个练习本的厚度为cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;

(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化.

教师活动:教师多媒体呈现上述四个实际问题。学生活动:学生独立解答,解答后小组交流,出代表进行反馈。设计意图:

通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点。通过对实际问题讨论,使学生体验从具体到抽象的认识过程。问题2:

教师活动:将上表中的前四个函数进行比较,思考:四个函数有什么共同特点?

学生活动:观察、思考。小组交流,分析、归纳共同特点,出代表反馈。教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点。教师根据学生的表述板书:

共同点:常数×自变量.

学生阅读教材正比例函数的概念,教师板书:

概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数.

教师追问:这里为什么强调k是常数,k≠0呢?正比例函数y=kx(k≠0)的结构特征

①k≠0

②x的次数是1

学生活动:学生交流、讨论,互相补充。设计意图:通过将前四个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念。有效地克服了因没有对比直接观察使学生出现的不适性、盲目性。培养学生的观察、分析、归纳、概括等思维能力。(三)、练习运用,内化概念

判断下列函数是否为正比例函数?如果是,请指出比例系数。教师活动:出示上题

学生活动:独立解答,教师巡视。教师根据学生反馈情况,引导学生根据“常数×自变量”归纳辨别正比例函数要注意的问题。设计意图:

使学生结合实例深入理解概念的内涵,做到具体问题具体分析。(四)、针对训练,提升能力

例1(1)若y=5x3m—2是正比例函数,m=。

(2)若y=(3m—2)x是正比例函数,则m的取值范围____。变式练习1、若y=(m—1)xm2是关于x的正比例函数,则m=

2、已知一个正比例函数的比例系数是—5,则它的解析式为:()

3、某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,当x=4(个)时,y=100(元)。(1)求正比例函数关系式及自变量的取值范围;(2)求当x=10(个)时,函数y的值;(3)求当y=500(元)时,自变量x的值。

(五)、小结与作业:

小结:

本节课你有哪些收获?用你的语言说一说。作业:

课后练习1题、2题。设计意图:

通过学生自己回顾、归纳本节内容,使学生对本节课的内容进行一次重新梳理,使学生能从整体上对本节内容有一个深刻地认识,使知识内化六、板书设计

正比例函数

一、正比例函数概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数.

22 1373639
");