对数与对数运算教案热选精选8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“对数与对数运算教案热选精选8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

对数与对数运算教案【第一篇】

1、知识技能:理解并掌握加法运算律和乘法运算律,并能够用字母来表示。能运用运算定律进行一些简便运算。

2、数学思考与问题解决:能根据具体情况,选择算法,发展思维的灵活性。

3、情感态度:在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。

1、理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2、能运用运算定律进行一些简便运算。

能根据具体情况,选择合适的算法。

自学与合作相结合、讲解与互帮相结合。

收集一些学生平时做错的例子,多媒体课件。

一、复习导入。

1、我们学过了哪些有关整数的运算律?(用提问的方式复习)。

2、它们有什么作用?

二、系统复习。

1、回顾和总结学过的整数运算律。(显示课件,分别复习运算律的文字叙述,和字母公式)。

(1)加法交换律a+b=b+a。

(2)加法结合律(a+b)+c=a+(b+c)。

(3)乘法交换律ab=ba。

(4)乘法结合律(ab)c=a(bc)。

(5)乘法对加法的分配律(a+b)c=ac+bc。

3、认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)。

4、感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。

(1)出示79页巩固应用的第1题。

(2)引导学生观察、思考。(自己通过观察、分析找出结果)。

(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)。

对数与对数运算教案【第二篇】

(2)有理数加法在实际中的应用。

(1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。

(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力。

(1)学生通过交流、归纳、总结有理数加法的'运算律,体会新旧知识的联系。

(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

难点运用加法运算律简化运算。

30+(-20),(-20)+30。

两次所得的和相同吗?换几个加数再试试。

计算:-7+2(-10)+(-5)。

2、

对数与对数运算教案【第三篇】

p21:例4“做一做”。

知识与技能:通过观察、猜想、验证、归纳,让学生经历探究发现减法的特殊规律并选择运用进行简算的过程。

过程与方法:让学生从解决生活实际问题中体会到计算方法的多样化。

情感态度价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

:理解一个数连续减去两个数,可以写成这个数减去后两个数的和的道理。

:灵活运用减法的性质进行简便运算。

:多媒体课件。

一、激趣生疑。

1、竞赛。

出示两组题,分组计算,比赛看哪组同学即对又快?(幻灯)。

第一组第二组。

72—6—472—(6+4)。

85—8—285—(8+2)。

126—70—30126—(70+30)。

2、发现:让学生通过观察、比较发现了什么?(学生说说自己的发现)。

3、猜想:观察三个等式,激励学生大胆猜测:这里面有没有什么规律呢?(学生发表自己的说法)。

4、师板书:从一个数里连续减去两个数可以写成这个数减去后两个数的和。

5、师提问:是不是从一个数里连续减去两个数都可以写成这个数减去后两个数的和呢?

6、举例验证。

7、师小结:大家善于观察,善于动脑,这是一种很好的学习习惯,刚才大家通过观察发现了规律,利用这些规律使计算简便。(板书:简便)。

二、自主探索,探究新知。

(创设情景引出例题)师:“同学们喜欢旅游吗?(喜欢)如果让你自己去旅行,你能行吗?不要着急,李叔叔给大家介绍了一个旅行法宝——《自助旅行》指南。这本书可以告诉我们旅行时应做的准备和注意事项。”

1。出示情境图。

(数数学信息:李叔叔昨天看了66页,今天又看了34页。这本书一共有234页。)。

师:根据这些数学信息,你能提出哪些数学问题?

2。尝试各种算法师:“还剩多少页?”这个问题,你能解决吗?

师:自己先列式算算看,计算好后把你的思路跟小组内的同学交流一下,看谁的算法最多。

3.全班汇报交流。

师:你们都是怎么计算的`?把你的思路跟大家分享一下。指名上黑板板演算法:

方法一方法二方法三。

234—66—34234—(66+34)234—34—66。

=168—34=234—100=200—66。

=134=134=134。

思路2:先算出李叔叔昨天和今天一共看了多少页,再从总页数里减去看过的页数,就是剩下的页数,即234—(66+34)。

思路3:总页数里减去今天的页数,再减去昨天的页数,就是剩下的页数,即2。

对数与对数运算教案【第四篇】

对数函数(第二课时)是人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.

二、教学目标。

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质。

2、运用对数函数的性质比较两个数的大小。

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力。

2、学生运用已学知识,已有经验解决新问题的能力。

3、探索出方法,有条理阐述自己观点的能力。

德育目标:

培养学生勤于思考、独立思考、合作交流等良好的个性品质。

三、教材的重点及难点。

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足。

2、通过适当的练习,加强对解题方法的掌握及原理的理解。

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析。

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点。

新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析。

1、课件展示本节课学习目标。

设计意图:明确任务,激发兴趣。

2、温故知新(已填表形式复习对数函数的图像和性质)。

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流。

1)同底对数比大小。

2)既不同底数,也不同真数的对数比大小。

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小。

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。

5、小结。

6、思考题。

以高考题为例,让学生学以致用,增强数学学习兴趣。

7、作业。

包括两个方面:

1、书写作业。

2、下节课前的预习作业。

七、教学效果分析。

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

对数与对数运算教案【第五篇】

1、掌握小数四则混合运算得运算顺序。

2、学会四则混合运算计算能简便运算的要简便。

掌握小数四则混合运算得运算顺序。

学会四则混合运算计算能简便运算的要简便。

多媒体和卡片。

××÷÷。

--÷203×。

9-÷+45+。

1、以开火车形式报得数。

p-74第一题。

1、学生先直接在书上写出得数。

2、学生以报得数形式校对。

p-74第二题。

1、先让学生说一说每题的运算顺序。

2、抽四名学生板演,教师巡视。

3、校对。错的订正。

p-75第三题。

1、前后四个同学讨论,哪些题能用简便方法运算?

2、学生独立思考解题。

3、抽四名学生板演,校对。

1、学生理解“除”“除以”被……除”和“去除”的含义?

2、学生相互讨论上面这些词的含义?

3、学生独立完成,教师巡视。

4、校对,错的说明原因。

今天我们复习了什么内容,又有什么地方得到了补充?

《作业本》。

对数与对数运算教案【第六篇】

知识技能。

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

数学思考与问题解决。

能根据具体情况,选择算法,发展思维的灵活性。

情感态度。

在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

能根据具体情况,选择合适的算法。

自学与合作相结合、讲解与互帮相结合。

收集一些学生平时做错的例子,多媒体。

(一)复习导入。

1.我们学过了哪些有关整数的运算律?(用提问的方式复习)。

2.它们有什么作用?

(二)系统复习。

1.回顾和总结学过的整数运算律。(显示,分别复习运算律的'文字叙述,和字母公式)。

(1)加法交换律a+b=b+a。

(2)加法结合律(a+b)+c=a+(b+c)。

(3)乘法交换律ab=ba。

(4)乘法结合律(ab)c=a(bc)。

(5)乘法对加法的分配律(a+b)c=ac+bc。

3.认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)。

4.感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。

(1)出示79页巩固应用的第1题。

(2)引导学生观察、思考。(自己通过观察、分析找出结果)。

(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)。

(4)数学万花筒。(自主阅读)。

三、习题设计(贯穿于教学过程)。

1.选用合适的方法计算下面各题:

46+32++++╳49╳4。

设计意图这是六道运用运算律解决计算题的基本题目,主要考察学生掌握运算律的情况。让学生自己在下面做,然后选六个学生上台演板,请学生自己上台讲评。

2.用乘法对加法的分配律计算下面各题。

╳+╳╳99+90513╳。

设计意图在下面就有学生反映乘法对加法的分配律掌握的不好,因此增加了乘法对加法的分配律的练习。在学生练习完以后,仍然发现个别学生掌握的不好。我增加讲述一个小故事帮助学生记忆。故事是:说一个父亲有一大一小两个儿子,过节了父亲去大儿子家走亲戚,当然不能偏向也要去小儿子家走亲戚呀。其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

板书设计。

运算律。

(1)加法交换律a+b=b+a。

(2)加法结合律(a+b)+c=a+(b+c)。

(3)乘法交换律ab=ba。

(4)乘法结合律(ab)c=a(bc)。

(5)乘法对加法的分配律(a+b)c=ac+bc。

在学生练习完以后,仍然发现个别学生对乘法分配律掌握得不好,我们还可以增加一个故事,来加深学生对乘法对加法的分配律的理解。有父子三人分别代表三个数,其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

对数与对数运算教案【第七篇】

我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.

如果看到这个式子会有何联想?

由学生回答(1)(2)(3)(4).

由学生回答后教师可用投影仪打出让学生看:,.

然后直接提出课题:若是否成立?

由学生回答应有成立.

证明:设则,由指数运算法则

即.(板书)

法则出来以后,要求学生能从以下几方面去认识:

(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.

(3)若真数是三个正数,结果会怎样?很容易可得.

(条件同前)

(4)能否利用法则完成下面的运算:

例1:计算

(1)(2)(3)

由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:

可由学生说出.得到大家认可后,再让学生完成证明.

证明:设则,由指数运算法则得

教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?

.或证明如下

,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)

(1)(2).

计算后再提出刚才没有解决的问题即并将其一般化改为学生在说出结论的同时就可给出证明如下:

设则,.教师还可让学生思考是否还有其它证明方法,可在课下研究.

(1)了解法则的由来.(怎么证)

(2)掌握法则的内容.(用符号语言和文字语言叙述)

(3)法则使用的条件.(使每一个对数都有意义)

(4)法则的功能.(要求能正反使用)

例2.计算

(1)(2)(3)

(4)(5)(6)

解答略

对学生的解答进行点评.

例3.已知,用的式子表示

(1)(2)(3).

对数与对数运算教案【第八篇】

学情分析:

第一课时:

教学目标:

1、从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。

2、初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。

3、培养学生发现数学知识和运用数学知识解决问题的能力。

教学重、难点:

教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。

教学难点:从实例中探究加、减法的互逆关系。

教学准备:课件。

教学过程。

一、理解加、减法的意义。

1、理解加法的意义。

(1)问:根据这道题你收集到了哪些信息?(让学生尝试用线段图表示)。

(2)请学生根据线段图写出加法算式。

814+1142=1956或1142+814=1956。

师:为什么用加法呢?

那怎样的运算叫做加法?(小组讨论)。

(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)。

(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)。

(4)说明加法各部分名称。

2、理解减法的意义。

能不能试着把这道加法应用题改编成减法应用题呢?

(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:

师:根据线段图写出两道减法算式,并说说这样列式的理由。

1956-814=1142或1956-1142=814。

(2)问:怎样的运算是减法?(小组讨论)。

(根据这两个算式,结合已有的知识讨论并试着用语言表示)。

(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。

40 1470440
");