比例的应用【最新5篇】

网友 分享 时间:

【前言导读】此篇优秀教案“比例的应用【最新5篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《比例的应用》教学设计【第一篇】

教学目标:

1、能正确的判断应用题中涉及到的量成什么比例关系。

2、能正确的用比例的知识解答比较简单的应用题。

3、培养学生的分析、判断和推理能力。

教学重点:

正确的判断应用题中的数量关系之间存在着什么样的比例关系。

教训难点:

能根据正比例、反比例的意义列出含有未知数的等式。

教学过程:

一、实际操作,引入新知识。

(1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

(2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

(3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

(4)你是怎样算的,可以列出式子吗?

二、教学例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

1、指导分析,理解题意。

2、学生自己想办法解答。

3、师生探究用比例的知识解答。

A、这道题中涉及到的量有哪些?

B、哪种量一定(不变)?从哪里知道的?

C、路程和时间成什么比例关系?判断的依据是什么?

D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

2小时和140千米相对应,5小时和X千米相对应,即可以列出比例:140 :2=X :5

E、学生列式并解答。

F、说说怎样检验我们的计算结果呢?

4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

学生自己解答,老师及时收集和处理反馈信息。

三、教学例2

一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

1、引导分析,理解题意,找到相关的量。

2、准确判断它们成什么比例关系。

3、学生解答,及时收集和处理反馈信息。

比较例1、例2的异同。

四、小结:

用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

比例的应用【第二篇】

教学目标

1.使学生能正确判断应用题中涉及的量成什么比例关系。

2.使学生能利用正、反比例的意义正确解答应用题。

3.培养学生的判断推理能力和分析能力。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学过程

一、复习准备。(课件演示:)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间。

2.路程一定,速度和时间。

3.单价一定,总价和数量。

4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

5.全校学生做操,每行站的人数和站的行数。

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。

教师板书

二、新授教学.

(一)教学例1(课件演示:)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2.利用比例的知识解答。

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长 千米。

2 =140×5

=350

答:两地之间的公路长350千米。

3.怎样检验这道题做得是否正确?

4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答。

70×5÷4

=350÷4

=(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例。

所以两次行驶的_________和_________的_________是相等的。

3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

4 =70×5

答:每小时需要行驶千米。

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行千米,需要几小时到达?

三、课堂小结。

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、课堂练习。(课件演示:)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业 .

1.一台拖拉机2小时耕地公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3.某种型号的钢滚珠,3个重克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计。

教案点评:

本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

探究活动

鱼池有多少条鱼?

活动目的

1.培养学生应用所学知识解决实际问题的能力。

2.培养学生的判断推理能力和分析能力。

活动形式

以小组为单位讨论。

活动题目

养鱼场有很多鱼池,要知道一个鱼池有多少条鱼。渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里。鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方。渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼。为什么?

活动过程

1.学生分小组讨论原因。

2.学生汇报讨论结果。

3.讲述生活中应用比例知识的事例。

参考答案

解:设水池里面共有 条鱼。

=750

答:水池里面共有750条鱼。

《比例的应用》教学设计【第三篇】

一、 创设情境,导入新课:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、 说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)

二、探究新知:

1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

板书课题:比例的应用

2、学习例1.(课件出示例题 )

例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?

(1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)

1、这道题中涉及哪三种量?(路程、时间和速度)

2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)

(课件出示思考的过程,并齐读)

(3) 提问: 根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)

(4) 解这个比例。 (教师板书解答过程)

(5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)

(6)写出答语。

(7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)

(1)自主探究用比例知识解答

1 合作交流,小组讨论:

题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问: 这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)

4、练习:(课件出示练习题)

一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶千米,需要多少小时到达?

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)

4、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)

三、知识应用:(出示课件做一做)

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

2、某种型号的钢滚球,3个重克。现有一些这种型号的滚球,共重945克,一共有多少个?

四、作业:

练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)

2、结束语:比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?

《比例的应用》教学设计【第四篇】

教学目标

1、复习成正比例和反比例关系的量的意义。

2、掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。

3、进一步培养同学们分析、推理和判断等思维能力。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学准备

多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1、判断下面每题里相关联的两种量是不是成比例?如果成比例,成

什么比例?

1。工作效率一定,工作时间和工作总量。( )

2。每块砖的面积一定,砖的块数和铺地面积。( )

3。挖一条水渠,参加的人数和所需要的时间。( )

4。从甲地到乙地所需的时间和所行走的速度。( )

5。时间一定,速度和距离。( )

2、选择题:

1、如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例

2、步测一段距离,每步的平均长度和步数( )。

① 成正比例② 成反比例③ 不成比例

3、比的后项一定,比的前项和比值()。

① 成正比例② 成反比例③ 不成比例

= πd 中,如果c一定,π和 d( )。

①成正比例 ② 成反比例③ 不成比例

5、化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

40:15= 60: ② 40=15×60 ③ 60=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量?

B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

2、总结 正 、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支元,乙种铅笔每支元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、 巩固练习

用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订本。

(30+10)=500×30

4 0=15000

=15000

=375

答:可装订375本。

2、比一比,想一想,每一组题中有什么不同, 你会列式吗?

(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸

用正反两种比例解答:

一辆汽车原计划每小时行80千米,从甲地到乙地要小时。实际小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定) X×Y=K(一定)

X和Y成正比例关系。 X和Y成反比例关系。

正y 、反比例解比例应用题要抓的四个环节

第一、分析:可分四步。

第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质)

第二、设未知数为X,注意写明计量单位。

第三、根据正反比例的意义列出方程。

第四、检验并答题。

比例尺的应用【第五篇】

教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。

教学目标:

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。

教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。

教学准备:教学光盘、了解家到学校的大概距离

教学过程

一、复习导入。

1、什么叫比例尺?求比例尺时要注意哪些问题?

2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?

二、教学新课

1、教学例7。

(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)

(2)说一说比例尺1:8000所表示的意义。

(3)根据对1:8000的理解让学生尝试练习。

(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。

重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

注意:最后的单位要换算成“米”作单位的数。

2、做“试一试”。

(1)独立算出学校到医院的图上距离。

(2)讨论怎样把医院的位置在图上表示出来。

(3)在图中表示医院的位置。

三、巩固练习。

1、做“练一练”先独立解题,在组织交流

2、做练习十一第4题

重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、 做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

4、 将下列各题做在课堂作业本上。

(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?

(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是厘米。甲、乙两城实际相距多少千米? 0 40 80 120千米

(3)在一幅比例尺为 的地图上,小丽量得某省会城市与北京的距离是厘米。这个城市与北京相距多远?

(4)做练习十一第3题。

(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。

四、全课小结。

通过本课的学习,你又掌握了什么新的本领?

五、课堂作业

完成补充习题的相关练习

板书设计:

比例尺的应用

5×8000=40000(厘米) 解:设明华小学到少年宫的实际距离是x厘米。

40000厘米=400米 5:x=1:8000

x=40000

40000厘米=400米

答:明华小学到少年宫的实际距离是400米。

16 224189
");