比例的应用通用4篇
【序言】由阿拉题库最美丽的网友为您整理分享的“比例的应用通用4篇”学习资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
小学数学六年级《比例的应用》教案【第一篇】
教学内容:
课本第63页例2;练一练;《作业本》第28页。
教学目标:
进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。
教学重点:
在连比中按比例分配应用题的特征与解答方法
教学难点:
理解连比(三部分比)的意义与分数应用题的关系
教学关键:
理解连比(三部分比)的意义
教学过程:
一、基本练习:
1、你可以想到什么?
(1)某班男、女生人数比是5∶4;
(2)柳树、杨树棵数比是1∶6;
(3)科技书和故事书比是5∶4。
2、练习:
(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?
(2)改编1题中的故事书80本为科技书有80本。
分析:每题有多种不同的解法,想想你能列出几种不同的解法?
二、新授
1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?
(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。
(2)学生尝试解答。
(3)反馈、讲评。
2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?
3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的`体积是多少?
三、练一练。P64。
四、课堂小结。
这堂课与上堂课有什么不同吗?你学会了什么?
五、《作业本》第28页。
《比例的应用》教学设计【第二篇】
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生独立思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
比例的应用【第三篇】
(用比例解决问题)
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习
1.说说正、反比例的意义。
2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从a地到b地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米
(二)新课
例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
(1)用以前方法解答。
(2)研究用比例的方法解答
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题
甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?
教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?
1、以前的发法解答。
2、怎样用比例知识解答?
3 讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
3.比例的应用(比例尺)
教学内容:教科书第6~8页的例4~例6,练习二的第1题。
教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:设未知数时长度单位的使用。
教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=( )分米=( )厘米=( )毫米
1千米=( )米=( )厘米
2.什么叫做比?
3.化简下面各比。 12 :8 10厘米:100厘米
2米:140厘米 3米:15千米 16厘米:90千米
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
1.教学比例尺的意义。
(1)教学例4。
设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。
让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)
“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离
“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:
图上距离 :实际距离
10厘米 : 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:
图上距离 :实际距离
10 : 1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离 =比例尺
实际距离
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1o厘米:1o米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=
(2)巩固练习。
让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。
2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
(1)教学例5。
在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?
指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
“这道题的图上距离是多少?”板书:15
“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:
15 = 1
x 6000000
指定一名学生到前面求x的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。
之后,再回忆一下解答过程。
(2)巩固练习。
做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。
(3)教学例6。
出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)
教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。
三、练习
1、比例尺=( ) 实际距离=( ) 图上距离=( )
米=( )厘米 千米=( )厘米 米=( )厘米 350000厘米=( )千米 千米=( )厘米
1、 独立完成练习二第1题,并订正。
2、 完成练习二的第2题、3题。
第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。
2、正比例和反比例的意义
第一课时
教学内容:p39~41 成正比例的量
教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
教学过程:
一、四顾旧知,复习铺垫
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
二、引导探索,学习新知
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……
(1)出示下表,填表
一列火车行驶的时间和路程
时间
路程
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表,交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、教学例2:
(1)花布的米数和总价表
数量 1 2 3 4 5 6 7 ……
总价 ……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书p39,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
x/y=k(一定)
(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?
4、看书p40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、p41做一做
2、p43~44练习七第1~5题。
第二课时
教学内容:p42 成反比例的量
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱元,1本;元,2本;元,4本;元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
c、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
d、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
p45~46练习七第6~11题。
第三课时
教学内容:正比例和反比例的比较
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别 。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题
出示表1
路程(千米) 5 10 25 50 100
时间(时) 1 2 5 10 20
表2
速度(千米/时) 100 50 20 10 5
时间(时) 1 2 5 10 20
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程 =速度 =时间
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习
1、做一做
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价—
总价一定,数量和单价—
数量一定,总价和单价—
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定, 和 成 比例。
被除数—定, 和 成 比例。
(2)前项一定, 和 成 比例。
(3)后项一定, 和 成 比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
《比例的应用》教学设计【第四篇】
教学目标:
1、能正确的判断应用题中涉及到的量成什么比例关系。
2、能正确的用比例的知识解答比较简单的应用题。
3、培养学生的分析、判断和推理能力。
教学重点:
正确的判断应用题中的数量关系之间存在着什么样的比例关系。
教训难点:
能根据正比例、反比例的意义列出含有未知数的等式。
教学过程:
一、实际操作,引入新知识。
(1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?
(2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。
(3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?
(4)你是怎样算的,可以列出式子吗?
二、教学例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?
1、指导分析,理解题意。
2、学生自己想办法解答。
3、师生探究用比例的知识解答。
A、这道题中涉及到的量有哪些?
B、哪种量一定(不变)?从哪里知道的?
C、路程和时间成什么比例关系?判断的依据是什么?
D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?
2小时和140千米相对应,5小时和X千米相对应,即可以列出比例:140 :2=X :5
E、学生列式并解答。
F、说说怎样检验我们的计算结果呢?
4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?
一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?
学生自己解答,老师及时收集和处理反馈信息。
三、教学例2
一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?
1、引导分析,理解题意,找到相关的量。
2、准确判断它们成什么比例关系。
3、学生解答,及时收集和处理反馈信息。
比较例1、例2的异同。
四、小结:
用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。
上一篇:《白杨》教学设计(4篇)