把假分数化成带分数教学设计热选通用8篇

网友 分享 时间:

【请您参阅】下面供您参考的“把假分数化成带分数教学设计热选通用8篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

把假分数化成带分数教学设计【第一篇】

这是一节由我校苏谊青老师执教的课,该教师一向教学基本功扎实,要求严格,是我们学习的榜样。

这是一节计算课,难点是把假分数化成带分数时,哪个数充当整数?哪个数充当分母?哪个数充当分子?其中学生最容易搞错的就是将分子、分母掉转。在教学的过程中,教师通过说理、示范、让学生说一说等,不厌其烦地引导学生进行思考、练习。教师设计的练习量充足且类型丰富,学生在整节课的学习中,从不懂到懂都是该教师手把手的'教学成果。

教师的教学设计由浅入深、环环相扣,使我受益非浅。以下是我在本节课中最欣赏的亮点:

1、板书设计形象具体、一目了然、有启发性。

2、教师的语言精辟、简练,有一针见血的功效。

3、练习精而活,让学生耳目一新。

4、能提问不同层次的学生,可以及时了解学生对知识点的掌握情况。

总的来说,苏老师的课上得十分好,是我们教学者学习的榜样,希望通过学习她的教学方式、方法使我们的教学水平能更上一层楼,使学生喜欢每一节数学课,期待上每一节数学课。

把假分数化成带分数教学设计【第二篇】

教科书第7~8页例1,第9页课堂活动及练习二的第1,2题。

教学目标。

1.使学生掌握百分数化分数、小数的方法,感受数学知识间的联系和区别。

2.让学生经历百分数化分数、小数的过程,培养学生抽象概括的能力。

3.能应用百分数化分数、小数的知识解决问题,培养学生的应用意识和实践能力。

教学重点。

教学准备。

教具:多媒体课件或挂图两张。

教学过程。

9月,主城各区空气质量良好率如下:

北碚区:100%渝北区:100%巴南区:%。

九龙坡区:%南岸区%经开区:%。

高新区:%江北区:%渝中区:%。

大渡口区:%沙坪坝区:%。

教师:同学们,看到上面的信息,你获得了哪些数学信息?又能提出哪些数学问题呢?

学生独立提出问题,师生互动,了解学生所提的问题。

学生1:9月份九龙坡区空气质量是良的有多少天?

学生2:

教师:如何解决这个问题呢?

学生大胆进行猜想,教师引导学生回到已有的知识,即化成分数和小数这个知识层面上来计算。

教师:看来我们需要学习百分数与分数、小数的互化的方法。

板书课题:百分数化小数和分数。

1.出示教科书第7~8页例1。

(1)学生先独立将例题中的百分数化成分数、小数,再在小组内交流自己的方法。

(2)各小组在全班交流百分数化分数、小数的方法。

(3)抽各组板书百分数化分数、小数的过程。

学生在小组讨论后全班交流,再教师小结。

教师抓住学生汇报的关键,重点引导学生在理解百分数与分数的关系的基础上来转化百分数,即:直接把百分数改写成分母为100的分数,再通过约分得到最简分数。

如:17%=17/100(直接改写)40%=40/100=2/5(约成最简分数)。

百分数化成小数,直接去掉百分号,并将小数点向左移动两位。如46%=。

1.三人活动,对口令(课堂活动第1题)。

三个同学一组,对口令,一人说百分数,另一名同学说分数,第三位同学说明这样做的理由。(要求学生每个同学说两个后要互换角色)。

2.画一画。

完成教科书上的课堂活动第2题。

画好后说一说你是怎样画的,为什么要那样画?(引导学生把百分数化成分数,再涂画)。

3.完成练习二的第1,2题。

4.解决生活中的实际问题。

(1)选择引入新课时提出的问题。

(2)根据同学们分享的“把假分数化成带分数教学设计热选通用8篇”,根据标注的粒数算一算这包种子大约可以发多少棵芽?)。

请学生独立反思这堂课的学习过程,总结一下自己有哪些收获,还有哪些问题和不足?

把假分数化成带分数教学设计【第三篇】

教学目标:

3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。

教学过程:

一、谈话导入:

谁还能举几个假分数的例子?(根据学生的回答有意识的板书成两类,同时选择1、2个分数让学生说说意义及其组成。)。

二、探索建构。

1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。

2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。

4、口答:将16/8、21/7、42/6转化成整数。

5、观察思考:这些能化成整数的假分数有什么特点?

6、师:你能不能也出几个能化成整数的假分数考考别人?

7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?

1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)。

2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)。

出示题目:读出下面带分数,并说说它的整数部分和分数部分。

621。

4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。

5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)。

6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)。

8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?

(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)。

9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)。

三、巩固练习。

1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。

2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。

3、练习九5。

出示题目:1=()/11=()/21=()/31=()/4。

2=()/12=()/22=()/32=()/4。

3=()/13=()/23=()/33=()/4。

第一组指导学生完成,第二、三组让学生独立完成。

观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?

(板书:整数——假分数)。

4、完成练习九6。

四、课作:练习九1、3;每日一题。

课后反思:

在备课之初,我就将这堂课的难点确定为。

理解分子不是分母倍数的假分数转化成带分数的算理。书上介绍了三种转化的方法,一种是画图理解、一种是推算理解、还有一种就是通过计算。根据以往的教学经验,计算(即通过一种方法的模仿)这一种方法学生掌握的效果最好,还有两种方法只有少数学生能想到,并且可能还是处在一种只可意会不可言传的程度,也就是心理明白是怎么一回事,但并不能叙述的很清楚。但如果只讲计算这种方法,而另两种方法不讲,对于学生而言可能就是纯碎的机械模仿,这就违背了教学原则,显然是不可行的。为此,在教学时,我先让学生试着把11/4转化成假分数,其间我通过巡视发现不少中上等学生已经通过计算将11/4转化成了假分数,接着我让这部分学生回答他们的转化方法,当学生们存在疑惑时,我适时将另两种思路在黑板上展示,这两种思路其实就是计算的算理说明,在学生们看过、想过后再来理解转化后的带分数每一部分的意思,在这样一种情况下难度就被分解了,学生既掌握了方法又理解了算理。

另外在这一堂课上,还有许多细节的处理不完善、不够到位,这些都是我以后在课堂教学中须努力改进的地方。

将本文的word文档下载到电脑,方便收藏和打印。

把假分数化成带分数教学设计【第四篇】

教学目标:

1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。

3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。

教学重点:会把假分数化成整数或带分数。

教学难点:理解假分数化成整数或带分数的转化思路。

教学过程:

一、谈话导入:

谁还能举几个假分数的例子?(根据学生的回答有意识的板书成两类,同时选择1、2个分数让学生说说意义及其组成。)。

二、探索建构。

(一)探索假分数化成整数的方法。

1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。

2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。

4、口答:将16/8、21/7、42/6转化成整数。

5、观察思考:这些能化成整数的假分数有什么特点?

6、师:你能不能也出几个能化成整数的假分数考考别人?

7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?

1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)。

2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)。

出示题目:读出下面带分数,并说说它的整数部分和分数部分。

621。

4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。

5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)。

6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)。

8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?

(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)。

9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)。

三、巩固练习。

1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。

2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。

3、练习九5。

出示题目:1=/11=()/21=()/31=()/4。

2=()/12=()/22=()/32=()/4。

3=()/13=()/23=()/33=()/4。

第一组指导学生完成,第二、三组让学生独立完成。

观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?

(板书:整数——假分数)。

4、完成练习九6。

四、课作:练习九1、3;每日一题。

课后反思:

在备课之初,我就将这堂课的难点确定为。

理解分子不是分母倍数的假分数转化成带分数的算理。书上介绍了三种转化的方法,一种是画图理解、一种是推算理解、还有一种就是通过计算。根据以往的教学经验,计算(即通过一种方法的模仿)这一种方法学生掌握的效果最好,还有两种方法只有少数学生能想到,并且可能还是处在一种只可意会不可言传的程度,也就是心理明白是怎么一回事,但并不能叙述的很清楚。但如果只讲计算这种方法,而另两种方法不讲,对于学生而言可能就是纯碎的机械模仿,这就违背了教学原则,显然是不可行的。为此,在教学时,我先让学生试着把11/4转化成假分数,其间我通过巡视发现不少中上等学生已经通过计算将11/4转化成了假分数,接着我让这部分学生回答他们的转化方法,当学生们存在疑惑时,我适时将另两种思路在黑板上展示,这两种思路其实就是计算的算理说明,在学生们看过、想过后再来理解转化后的带分数每一部分的意思,在这样一种情况下难度就被分解了,学生既掌握了方法又理解了算理。

另外在这一堂课上,还有许多细节的处理不完善、不够到位,这些都是我以后在课堂教学中须努力改进的地方。

把假分数化成带分数教学设计【第五篇】

这一环节的教学,先复习分数与除法的关系,再出示图形,让生先用假分数表示,再用整数(或带分数)表示,顺其自然的导入新课。由于相关内容的复习,使得学生在合作学习中很快的掌握了知识,再由老师适时点拨,加深了巩固。

三、说教学程序。

(一)谈话回忆,导入新课。

课前,出示图形,让生用假分数表示,再用整数(或带分数)表示,(一类是能化成整数,另一类是化成带分数的),从而引出本节课的研究内容《假分数化成整数或带分数》。

(二)自主合作,探索新知。

出示自学互动指导(一):

2、把你的发现和小组成员交流一下。

学生在学习时可能有这两种情况:一是根据分数与除法的关系,分子相当于被除数,分母相当于除数,这几组分数的结果都是整数;二是根据分数的含义,一个分数含有几个分数单位,“几个”就是这些分数的结果。从而得出:能化成整数的假分数,它的分子一定是分母的倍数,是几倍化成整数就是几。

出示自学互动指导(二)。

1、自学课本第71页例4第(2)小题,思考:假分数是怎样化成带分数的.?

2、把你的发现和小组成员交流一下。

三、测评。

引导学生对本节课学习的知识和学习方法进行熟练和巩固,多样的练习形式使练习充满活力,培养学生学习数学的信心。

5、总结。

通过今天的学习,你有哪些收获?你对自己的表现满意吗?

(从总结中了解学生的掌握情况。)。

把假分数化成带分数教学设计【第六篇】

分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

3、完成练一练。

独立完成练习。

汇报方法,说说是怎么想的?

哪些假分数能化成整数,哪些假分数要化成带分数?

三、巩固练习。

1、完成练习九第3题。

独立完成练习,汇报方法,集体核对。

2、完成第2题。

读题,理解题意。

尝试练习,说说你是怎样想到的?怎样改写?

如果看图,你能直接用带分数表示吗?你是怎样看的?

3、完成第4题。

关键要看清什么?(把“1”平均分成了几份)。

怎样找比较快?说说你的方法。

4、完成第5题。

独立完成填空。

把不是0的整数化成假分数时,怎样化?(用整数与分母相乘的积作分子)。

5、完成第6题。

独立完成。

汇报方法,说说想法。

还有其它的比较方法吗?哪一种方法比较快?

四、课堂小结。

今天学习了什么内容?你又有了什么新的收获?8/11能化成带分数吗?带分数是假分数的另一种表现形式。

把假分数化成带分数教学设计【第七篇】

教学目标:使学生学会把整数或带分数化成假分数的方法,并能正确地把整数或带分数化成假分数。

教学重点:熟练地进行整数或带分数化成假分数。

教学难点:能进行知识运用,培养实践能力。

教学课型:新授课。

教具准备:课件。

教学过程:

一,复习铺垫,准备迁移。

1,用分数的意义说明下列分数,以及每个分数的分母,分子和分数单位。[课件1]。

3/42/21/65/57/78/23。

2,在括号里填上适当的数。[课件2]。

2个1/3是()/()6个1/6是()/()。

8个1/8是()/()l4个1/2是()/()。

18个1/5是()分之()17个1/4是()/()。

二,探究新知,激发思维。

1,教学p103。例5:把1化成分母分别是2,3,4,5,…的分数。

提问:a,说说图意是什么你有没有反对的意见。

板书:1=2/2=3/3=4/4=5/5=……。

b,其它整数能不能化成分母是任意非0自然数的假分数呢。

2,教学p103。例6:把2和5分别化成分母是3的假分数。

(1)同桌相互说说怎样把2和5化成分母是4的分数。

(2)集体说说怎样把一个整数化成指定分母的.分数。

(3)小结:把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子。

※把1,2,5化成分母是1的假分数。

3,教学p104。例7:把2化成分母是5的假分数。

(1)提问:a,谁能说说假分数是怎样化成带分数的。

b,那么,由此及彼,怎样把带分数化成假分数呢。

(2)板书:2=5×2+4/5=14/5。

(3)小结:把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子。

※p104。做一做1,2。

三,总结反馈,巩固提高。

1,总结:今天我们学习的内容是什么。

2,p105。1,3。

四,家作。

p105。2。

把假分数化成带分数教学设计【第八篇】

1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。

3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。

一、谈话导入:

谁还能举几个假分数的例子?(根据学生的回答有意识的.板书成两类,同时选择1、2个分数让学生说说意义及其组成。)。

二、探索建构。

1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。

2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。

4、口答:将16/8、21/7、42/6转化成整数。

5、观察思考:这些能化成整数的假分数有什么特点?

6、师:你能不能也出几个能化成整数的假分数考考别人?

7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?

1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)。

2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)。

出示题目:读出下面带分数,并说说它的整数部分和分数部分。

621。

4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。

5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)。

6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)。

(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)。

9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)。

三、巩固练习。

1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。

2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。

3、练习九5。

出示题目:1=()/11=()/21=()/31=()/4。

2=()/12=()/22=()/32=()/4。

3=()/13=()/23=()/33=()/4。

第一组指导学生完成,第二、三组让学生独立完成。

观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?

(板书:整数——假分数)。

4、完成练习九6。

四、课作:练习九1、3;每日一题。

在备课之初,我就将这堂课的难点确定为。

理解分子不是分母倍数的假分数转化成带分数的算理。书上介绍了三种转化的方法,一种是画图理解、一种是推算理解、还有一种就是通过计算。根据以往的教学经验,计算(即通过一种方法的模仿)这一种方法学生掌握的效果最好,还有两种方法只有少数学生能想到,并且可能还是处在一种只可意会不可言传的程度,也就是心理明白是怎么一回事,但并不能叙述的很清楚。但如果只讲计算这种方法,而另两种方法不讲,对于学生而言可能就是纯碎的机械模仿,这就违背了教学原则,显然是不可行的。为此,在教学时,我先让学生试着把11/4转化成假分数,其间我通过巡视发现不少中上等学生已经通过计算将11/4转化成了假分数,接着我让这部分学生回答他们的转化方法,当学生们存在疑惑时,我适时将另两种思路在黑板上展示,这两种思路其实就是计算的算理说明,在学生们看过、想过后再来理解转化后的带分数每一部分的意思,在这样一种情况下难度就被分解了,学生既掌握了方法又理解了算理。

另外在这一堂课上,还有许多细节的处理不完善、不够到位,这些都是我以后在课堂教学中须努力改进的地方。

22 3244865
");