《一元一次方程》教学设计【推荐5篇】

网友 分享 时间:

【导言】此例“《一元一次方程》教学设计【推荐5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

元一次方程教案【第一篇】

教学目标

知识与能力

1.通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步。

2.在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力。

3.在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的`过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想。

教学目标

过程与方法

1.能结合实际问题情境发现并提出数学问题。

2.通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力。

情感态度与价值观目标

1.勤于思考,乐于探究,敢于发表自己的观点;

2.以积极的态度与同伴合作,从解决实际问题中体验数学价值。

教学重难点

重点

会用一元一次方程解决实际问题。

难点

将实际问题转化为数学问题,通过列方程解决问题。

元一次方程教案【第二篇】

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

一架天平、课件及班班通

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

操作、演示、讨论、板书:

5=5 5+2=5+2

x=10 x+5=15

观察等式,发现什么规律?

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

观察课件,你又发现了什么?

学生汇报师板书:

x+2=10

x+2-2=10-2

x =8

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

板书设计: 解方程(一)

x+2=10

解: x+2-2=10-2 ( 方程两边都减去2)

x =8

元一次方程教案【第三篇】

数学思考:

1、学习分析问题找到相等关系并通过列方程解决问题的方法;

2、通过学习移项解一元一次方程,体会到式子变形的转化作用。

解决问题:体会解方程中的化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。

情感态度:通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。

教学重点:

1、找相等关系列一元一次方程;

2、用移项、合并等解一元一次方程。

教学难点:找相等关系列方程,正确地移项解一元一次方程。

教学过程:

[活动1]展示问题、创设情境

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

(学生自主分析后,教师提问:)

1、本题怎样设未知数?

2、这批书的总数有几种表示法?它们之间有什么关系?

3、本题哪个相等关系可以作为列方程的依据呢?

(师生共同列出方程。)

解:设有x名学生,则可列方程得:

3x+20=4x—25

[活动2]学习“移项”解方程

提问:如何解方程3x+20=4x—25呢?

(学生分组讨论:①解方程的。目标是什么?②利用什么知识可以实现这种转化?)

引导学生分析方程的变化:

3x+20=4x—25

3x—4x=—25—20

观察:上面方程的变形有些什么变化?

归纳:像这样把等式一边的某项变号后移到另一边叫做移项。

[活动3]总结

解这个方程的具体过程:

3x+20=4x—25

元一次方程教案【第四篇】

一、说教材

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的`解法。并通过练习归纳掌握解方程的基本步骤和技能。

1、教学目标

(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·

2、了解一元一次方程解法的一般步骤·

(2)、能力目标:经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,

(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

2、通过埃及古题的情境感受数学文明。

2、教学重点:通过"去分母"解一元一次方程

3、教学难点:探究通过"去分母"的方法解一元一次方程

二、说教法:

在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:

1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。

2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

三、说学法

教学活动流程图活动内容和目的

活动1列方程解决实际问题创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·

活动2解含有分母的一元一次方程以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·

活动3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·

活动4小结总结本节收获

元一次方程教案【第五篇】

一元一次方程

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程

1、课前训练一

(1)如果 || =9,则=;如果2 =9,则=

(2)在数轴上距离原点4个单位长度的数为

(3)下列关于相反数的说法不正确的是( )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为 倒数 ,如:

(5)如果,则( )

A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

A、B、C、D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是( )

A、B、C、D、

(2)下列方程中,属于一元一次方程的是( )

A、B、C、D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了 场,依题意可列得方程:

解得=

答:甲队胜了 场,平了 场。

(4)根据条件“一个数比它的一半大2”可列得方程为

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

四、课外作业P151习题5。1

一元一次方程

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程

1、课前训练一

(1)如果 || =9,则=;如果2 =9,则=

(2)在数轴上距离原点4个单位长度的数为

(3)下列关于相反数的。说法不正确的是( )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为 倒数 ,如:

(5)如果,则( )

A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

A、B、C、D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是( )

A、B、C、D、

(2)下列方程中,属于一元一次方程的是( )

A、B、C、D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了 场,依题意可列得方程:

解得=

答:甲队胜了 场,平了 场。

(4)根据条件“一个数比它的一半大2”可列得方程为

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

四、课外作业P151习题5。1

22 255405
");