一元一次方程教学设计【参考4篇】

网友 分享 时间:

【导言】此例“一元一次方程教学设计【参考4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

元一次方程教学设计【第一篇】

教学目标

①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。

②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。

③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。

教学重点与难点

重点:一次函数与一元一次方程的关系的理解。

难点:一次函数与一元一次方程的关系的理解。

教学设计

导语

前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。

注:点明学习本节内容的必要性:

(1)函数与方程、方程组、不等式有着必然的联系;

(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。

引入新课

我们先来看下面的两个问题有什么关系:

(1)解方程2x+20=0。

(2)当自变量为何值时,函数y=2x+20的值为零?

问题:

①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?

②从问题本质上看,(1)和(2)有什么关系?

③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?

注:用具体问题作对比,帮助学生理解。

在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。

探讨归纳

从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?

学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)

师生共同归纳(教科书39页)(略)

让学生在探究过程中理解两个问题的同一性。

练习巩固

1.以下的一元一次方程问题与一次函数问题是同一个问题

序号

一元一次方程问题

一次函数问题

1、解方程3x—2=0当x为何值时,y=3x—2的值为O?

2、解方程8x+3=0

3、当x为何值时,y=—7x+2的值为O?

解:(略)

注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等

2.根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?

解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;

由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。

注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象

了解。

综合应用

教科书例1(略)

对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。

注:例1可看成是一次函数与一元一次方程关系的一个直接应用。

归纳提高

框图化小结:

从数的角度看:

求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0

从形的角度看:

求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标

从数和形两方面总结,帮助学生建立数形结合的观念。

布置作业

教科书习题第1、2题。

元一次方程教学设计【第二篇】

一、教材分析

(一)教材的地位和作用

本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力

(二)教材的重难点

本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

二、教学目标分析

(一)知识技能目标

1.目标内容

(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性

(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识

2.目标分析

(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径

(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力

(二)过程目标

1.目标内容

在活动中感受方程思想在数学中的作用,进一步增强应用意识

2.目标分析

利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决

三)情感目标

1.目标内容

(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心

(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想

2.目标分析

七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键

三、教材处理与教法分析

本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识

元一次方程教学设计【第三篇】

教学目标

1、了解方程的概念和一元一次方程的概念;

2、知道什么是解方程,会检验某个值是不是方程的解;

3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

教学重点

1、一元一次方程的概念及方程的解;

2、能验证一个数是否是一个方程的解。

教学难点

寻找问题中的等量关系,列出方程。

教学过程

一、情景诱导

同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的体重吗?

如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

二、自学指导

学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

附:自学提纲:

1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

2、什么是一元一次方程?请举出1—2个例子。

3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

5、什么是解方程?

三、展示归纳

1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

2、发动学生进行评价、补充、完善;

3、教师根据展示情况进行必要的讲解和强调。

四、变式练习

1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

附:变式练习

1、下列各式中,哪些是一元一次方程?

(1) 5x=0;

(2) 1+3x ;

(3) x2=4+x ;

(4) x+y=5 ;

(5)3m+2=1-m ;

(6)x+2>1

2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

3、已知关于X的方程2X +3=0为一元一次方程,求k的值。

4、练习本每本元,小明拿了10元钱买了y本,找回元,列方程是

5、设某数为x,根据题意列出方程,不必求解:

(1)某数比它的2倍小3;

(2)某数与5的差比它的2倍少11;

(3)把某数增加它的10%后恰为80

6、若x=1是方程kx-1=0的解,则k=

五、课堂小结

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

六、布置作业

课本83页习题 第1题。

元一次方程教学设计【第四篇】

一、学生起点分析:

通过前几节解方程的学习,学生已经掌握了解方程的基本方法。在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。

二、教学任务分析:

本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程。因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。

三、教学目标:

知识与技能:

1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题。

2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意。

过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。

情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。

四、教学过程设计:

环节一创设情景,引入新课

内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象。

考虑几个问题:

1、手里的橡皮泥在手压前和手压后有何变化?

2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

3、在这个变化过程中,是否有不变的量?是什么没变?

目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量。同时分析出不变量与变量间的等量关系。

学生能够认识到:手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了。即高度和底面半径发生了改变。手压前后体积不变,重量不变。

环节二:运用情景,解决问题

内容:例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题。

实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析。

锻压前锻压后

底面半径5cm 10cm

高36cm xcm

体积π×25×36 π×100x

由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程。

解:设锻压后的圆柱的高为xcm,由题意得

π×25×36=π×100x。

解之得x=9。

此时有学生将π的值取,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

(1)此类题目中的π值由等式的基本性质就已约去,无须带具体值;

(2)若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度。

过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释。

分析:锻压前锻压后

底面半径5cm长acm,宽bcm

高36cm xcm

体积π×25×36 abx

环节三:操作实践,发现规律

内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

目的:我们知道,感知到的东西往往没有自己亲手经历操作后的感受来得实在。所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现。这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中。

实际效果:

长(cm)宽(cm)面积(cm2)

长方形1 15 5 75

长方形2

长方形3

长方形4

长方形5 11 9 99

长方形6 10 10 100

由学生的实际操作得到的近似值已反映出来一个很好的规律。

学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为,当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大。当长与宽一样长时面积最大。

过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了。学生的理解远比直接先讲教材的例题效果要好的多。

环节四:练一练,体验数学模型

内容:课本例题

目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性。

例2、一根长为10米的铁丝围成一个长方形。若该长方形的长比宽多米。

(1)此时长方形的长和宽各为多少米?

(2)若该长方形的长比宽多米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

实际效果:学生掌握很好。课本已有完整的解题过程,留做课后作业。

环节五:课堂小结

1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键。其中也蕴涵了许多变与不变的辨证的思想。

2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验。

3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题。

环节六:布置作业

22 1114538
");