梯形面积计算教学设计(汇总4篇)
【前言导读】此篇优秀范文“梯形面积计算教学设计(汇总4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
小学五年级上册数学《梯形面积的计算》教案【第一篇】
教学目标: 1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结。 (略)
小学五年级上册数学《梯形面积的计算》教案【第二篇】
《梯形面积的计算》是人教版数学第九册内容。听过学区本节公开课,确有可借鉴之处,同时也存在一些问题,值得深思。
教学成功之处主要体现在以下几点:
一、首尾照应实现数学价值。
由实际事件“帮工人师傅计算花坛面积”引出探究主题——梯形面积的计算,得出结论后,运用公式解决这一实践问题。教师创造性使用教材,改变例题为学生身边常见事物,始终将数学置于生活背景之中,充分体现数学“来源于生活,回归于生活”的理念,实现数学的应用价值。
二、转化推理蕴涵思想方法。
“梯形面积的计算”是在平行四边形、三角形面积计算的学习基础之上提出的。教师首先请学生回忆了三角形面积的推导方法,使学生意识到梯形也可与学过的其他图形产生联系,从而计算出面积。让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想,也落实了“数学要在学生已有的知识背景下学习”这一教学理念。
三、合作探究促进创造思维。
在学生独立思考、自主探索的基础上组织合作交流是本节课的重点环节。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”面对同样的问题,学生会出现不同的思维方式。利用梯形与其他图形的联系求梯形面积,学生有着不同的做法:有的利用等腰梯形、有的利用直角梯形、有的利用普通梯形,有的拼成了长方形,有的拼成普通的平行四边形;有的把梯形分割为平行四边形与三角形……自由的探讨交流带来的是思维的充分扩展,是质的飞跃。在独立思考的基础上进行合作交流,能满足学生展示自我的心理需要;通过师生互动、生生互动,促使学生从不同角度去思考问题,对自己和他人的观点进行反思与批判,在各种观点相互碰撞的过程中迸发创造性思维的火花。
考问教学细节,又发现一些问题:
镜头一:利用公式求梯形面积的练习中,一同学列式为(+2)×8÷2,而原图中,为下底,2为上底。教师强调:“这样做不对,应为上底加下底,也就是(2+)”。
“上底加下底”与“下底加上底”,对于求梯形面积而言,究竟有何区别呢?教师本不宜如此“循规蹈矩、照本宣科”。倘若该同学反问:“把这个梯形倒过来,面积是不变的。那么我的算式是否正确?”教师该如何应答?可惜,没有一个同学提出质疑。教师强依公式而下的结论显然并不合适,为什么却无人指出?“公式是不可不依的”、“老师的结论是不可推翻的”……“一言堂”教学的印痕桎梏着师生的思维,使“探究”有时不免流于形式。对学习而言,这是可怕的。“学起于思,思起于疑。”“学贵有疑,疑则进也。”要真正发挥学生的主体作用,必须鼓励学生善疑、敢疑。当然,这需要教师的能力与勇气——自我质疑的能力、承认错误的勇气。
镜头二:学生在练习本上完成了习题,在教师示意下走上讲台,利用投影把答案展示给大家。第一次展示,同学们趣味盎然;二次、三次过后,变得兴味索然。几声简单的“对”、“同意”,使课堂气氛趋于沉闷。
作为教学辅助手段,多媒体愈来愈受到师生青睐。但是,多媒体的运用必须把握好“度”。不是所有环节都适合使用多媒体,不是任何步骤的实施都需要多媒体。学生练习的是几道非常简单的基础性题目,正确率相当高,教师巡视时也能发现这点,那么,以口答的形式订正不仅简单明了,更节省了宝贵的课堂时间。对于稍有难度的题目,则可以利用多媒体展示的方式,组织学生进行短时间交流,使学生知其然亦知其所以然,而不是简单地回答“对”或者“错”。
数学教案计算梯形的面积【第三篇】
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。
教具准备:课件。
教学过程:
(一)复习旧知,做好铺垫。
1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。
2、练习(出示)
口答下面各图形的面积。(单位:厘米)
(二)创设情景,提出问题
师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)
师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)
师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)
(三)小组学习,解决问题。
师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)
合作要求:
(1)想一想:我们已经学过哪几种图形的面积公式?
(2)试一试:把梯形转化成已经学过的图形。(任选一种)
(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?
(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。
全班交流时,教师根据学生说的方法用课件演示转化及推导过程。
教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)
师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)
师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。
课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?
让学生独立计算,在集体订正。
师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。
(四)应用拓展,巩固知识。
师:下面我们来做练习吧。
1、一☆练习
a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。
b.课件出示:P75做一做,由学生独立完成,集体订正。
c.课件出示:判断
1)两个梯形能拼成一个平行四边形。( )
2)平行四边形的面积是梯形面积的2倍。( )
让学生独立判断,并说明理由。
2、二☆练习
a.课件出示:
一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。
b.课件出示:
我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:
(顶层根数+底层根数)×层数÷2
想一想是什么道理,并算出图中圆木的总根数。
3、三☆练习
课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。
学生独立解答,再交流。
(五)小结全课,结束教学
让学生讲讲这节课的收获,并布置作业。
有时间的话做“思考”
在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
五年级《梯形的面积》教案【第四篇】
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。
教学重点:
发现、理解和应用梯形面积计算公式。
教学难点:
理解公式的推导过程
教具准备:
计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:
每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。
教学过程:
一、迁移诱导,激发参与兴趣
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
二、实验操作,引导参与探究
1、转化
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
2、观察
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
板书如下:梯形面积 拼成的平行四边形面积的一半
平行四边形的底 梯形是上底+下底
平行四边形的高 梯形的高
3、推导
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
板书如下:
平行四边形面积= 底 × 高
梯 形 的 面 积=(上底+下底)×高÷2
S=(a+b)×h÷2
提问:计算梯形的面积为什么除以2?
三、反馈调节,巩固参与成果
1、引导实际应用,巩固梯形面积公式
2、分层训练,培养能力
3、发展提高,深化知识
上一篇:画风教学设计实用5篇