梯形面积计算(汇总4篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“梯形面积计算(汇总4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

五年级数学梯形的面积教案【第一篇】

教学内容:

混合练习(课本第84-85页,练习十九第11-18题)

教学目标:

⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

⒈公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

⒈独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

⒉完成第14题

先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、:

多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

五、板书设计:

梯形面积的计算

六、教后感:

2、应用题

五年级数学梯形的面积教案【第二篇】

教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

课后:

《梯形的面积》的教学设计及反思【第三篇】

教学内容:

梯形面积的计算

教学目标:

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点

梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程:

一、复习引入:

1、复习:

同学们会计算哪些图形的面积?

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

二、探索解决问题办法,并尝试转化

1、引导学生提出解决问题方案

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化

刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察

同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

2、计算梯形面积

平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

3、推导梯形面积公式

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

用字母表示梯形面积公式

阅读教材,加深理解

四、应用公式计算梯形面积

1、基本练习:

计算下面梯形面积

2、教学例题

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题

4、抢答题

5、测量并计算

五、总结课堂

《梯形的面积》的教学设计及反思

教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的'迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:

一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。

三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。

介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。

应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。

《梯形的面积》教学设计【第四篇】

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点

梯形面积公式的推导过程。

五、教学策略设计

我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

六、教学过程设计

教学环节一

一、汇报预习的成果

(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、对于梯形,你们已经知道了什么?

3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

4、如何推导梯形的面积计算公式?谈谈你的想法。

学生汇报前三个:

生1:我发现任何梯形都可以分成两个三角形。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。

(揭示课题)

设计意图

引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

教学环节二

二、"假设--实验--验证",引导学生体验数学知识"再创造"的。过程。

师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)

生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

设计意图

交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。

教学环节

三、应用知识,自主探究

师:同学们是不是都有自己的想法了,想不想马上动手试试?

(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

教学环节四

设计意图

对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

四、汇报展示

师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:

引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

教学环节

五、在实践应用中拓展、延续数学知识的"再创造"。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:

学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

六、作业设计

师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

七、板书设计

梯形的面积

梯形的面积=(上底+下底)×高÷2转化

S梯形=(a+b)×h÷2(学生的方法展示)

八、预设效果

本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

九、课外知识的准备

了解多种转化的方法。

16 942704
");