乘法交换律 乘法交换律教学设计【范例8篇】

网友 分享 时间:

【导言】此例“乘法交换律 乘法交换律教学设计【范例8篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《乘法交换律》的教学反思【第一篇】

乘法交换律结合律教学反思

乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。

上完这一课我收获以下几点:

1、充分挖掘教材结合学生实际进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识和探究兴趣。

2、注意渗透一种科学的学习方法。对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,本节课我抓住这一教学重点,有意识地设计了“创设情景,发现问题――提出假设,举例验证――概括规律”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的`一般方法,学生学得积极、主动。

3、紧密联系学生的生活实际,引导学生在已有的基础上发现和归纳出运算定律。学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,但本单元毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握,因此,教学时,我充分利用教材中呈现的学生经历的跳绳、踢键等具体情境,利用学生已掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过学生自己的举例发现规律,概括出相应的运算律。

4、重视让学生在探索中经历运算律的发现过程,教学时从实际事例引入,通过学生解答,初步发现不同算法间的联系。接着让学生举出类似的等式,并对这些等式进行分析和比较,引导学生主动地探索规律,发现规律。

乘法交换律教学设计【第二篇】

教材分析

本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。

学情分析

学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。

知识技能上:在学习本课前,学生已经知道:25×4=100 、125×8=1000以及整十整百整千数乘法计算比较简便。

学习目标

知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。

过程与方法:经历数学探索过程,进一步体会探索的。过程和方法。

情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。

学习重难点

探索、发现、理解、应用乘法结合律。

教学策略

创设情境,组织探索,引导自主学习。

教学过程

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a。b指的是什么?

(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成 (5×3)×4 吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3) 可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3 3×(5×4)

(设计意图:通过对算式的变换,巩固乘法交换律)

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4 = 3×(5×4)吗?

生思考回答。

(设计意图:通过对算式异同的比较,让学生自己发现规律,)

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

三、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4 42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的

知识通过练习加以巩固运用。)

五、小结:

1、 这节课你学到了什么?

2、 我们是怎样认识这个好朋友的?

板书:

探索与发现

乘法交换律 乘法结合律

a×b﹦b×a (a×b)×c﹦a×(b×c)

5×4﹦4×5 (3×5)×4 =3×(5×4)

生举例略 生举例略

四年级数学乘法交换律教案【第三篇】

教学内容:

九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。

教学要求:

1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.增强合作意识,激发学生学习数学的兴趣。

教学过程:

一、猜谜引入

1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

生:(积极举手,低声喊)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

2.提问:用字母如何表示加法交换律、结合律呢?

适时板书:a+b=b+a a+b+c=a+(b+c)

3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

二、猜测验证

1.猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:

2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

4.交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

提问:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换乘数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:和你们说的有什么不同?

生1:我们说的是乘数,但书上说的是因数。

生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

师:会用字母表示吗?板书:ab=ba)。

电脑出示练习十七第2题。

师:请你判别一下,有没有运用乘法交换律?并说明理由。

[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

(2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。

生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

生6:我们是用算式来说明的,如:(3467)23=34状6723)。

提问:同学们能用自己的语言描述一下乘法结合律吗?

生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

师:你说得很准确,有什么好方法帮助记忆?

生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)

[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

5.比较加法运算定律和乘法运算定律。

师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]

三、运用

1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

生:我们验算乘法时就应用了乘法的交换律。

2.基本练习。

3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=( )

[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]

四、小结。(略)

《乘法交换律》的教学反思【第四篇】

“乘法交换律”,初看教材我感觉内容比较简单例如3*4=4*3、15*6=6*15等,相信学生很容易理解。于是我就很草率地处理了本节课的内容(我先举几个两个数相乘的例子,再请学生口算,再交换两个因数的位置请学生口算,然后请学生说一说你发现了什么规律,最后就放手让学生尝试练习)。第一节课后,我随手拿起几本学生作业本检查质量,没想到学生的作业中竟然有许多问题。如:112/28与28/112,58—47与47—58是否相等等连线题。学生竟然把它们用线连了起来表示相等,我十分惊讶。难道说他们(就连优秀生也不例外)不懂吗(算一算不就知道了吗)?事后,我仔细反思这节课。在上第二节课时我对这一节课做了很大的改动:课一开始我先请学生举例两个数相加并交换它们的位置算一算发现和不变,用以前学过的加法交换律引入,然后让大家一起来总结刚才是如何学习得到加法交换律的方法。在此基础上我让学生想一想在乘法、除法、减法中会不会也有这种规律呢?接着我就让学生进行小组合作来探讨验证,最后请学生汇报。学生很自然而然地就得到了乘法中有交换律,而在除法和减法中却没有这种交换规律。学生学习的知识结构完整了。

通过这两节课的对比,可以看出只有从学生已有的知识经验水平出发,通过猜想、验证、观察、交流、归纳、亲自经历发现问题、提出问题、解决问题,从中体验成功或失败的情感,才能加深对知识的理解,培养学生的学习能力。另外我还深刻地认识到我们的学生在接受新知识的时候往往是停留在表面化的,极容易把知识延伸开去(如加法有交换律,就容易迁移到乘法、减法、除法也有此规律)。所以我们教师应从知识整体出发,站在学生的角度充分考虑学生已有知识水平及他们学习新知识时的方式方法。充分发挥教材的深意,使知识更趋完善,结构完整化。

乘法的交换律和结合律【第五篇】

乘法的交换律和结合律

教学内容:九年义务教育六年制小学数学第八册61――64页

教学目的:1、理解乘法交换律和结合律,能运用运算定律使计算简便

2、培养学生的分析、比较、综合能力以及初步的抽象概括能力

3、培养学生的探究意识和问题解决能力

4、通过学生的自主学习,激发学生学习数学的兴趣。

教学重点:理解乘法交换律、结合律及简便运算的方法。

教学难点:抽象的语言表述。

教学设想:本教材是在学生已经掌握了乘法的意义并且对乘法的交换律、结合律有了初步认识的。基础上进行教学的。本节课力求突出以学生发展为本的教育思想;所以整个教学过程要求以学生自主学习为主,通过学生的观察、验证、归纳、类比等数学学习形式,让学生去感受数学问题的探索性和挑战性。同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。

本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,引导学生观察、思考并发现算式的联系。

在新课展开阶段,注重学生动手操作,让学生在独立思考、出题验证的基础上进行小组交流、探求规律,使学生感受到数学的发展是一个充满着观察、试验、归纳的探索过程,同时培养了学生与他人合作能力。在整个知识探索的过程阶段,重视学生的体验,通过各种方法的比较、体会和欣赏,感受到运用运算定律的好处,使学生自然而然地产生运用运算定律进行简算的欲望,培养了学生的优化意识。

在巩固练习阶段,教师没有给出统一的要求,而是让学生选择自己最喜欢的方式进行计算,充分给学生以自主权,诶学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”的新教学理念。

教学过程:

一、情境引入、发现特征

1、 ① 用鸡蛋盘放鸡蛋,(如图)一盘可以放多少个鸡蛋?

② 阳光小区有楼房8幢,每幢12层,每层6户,共有多少户?

(让学生在练习本上独立地用自己喜欢的方式解题)

2、汇报所写的算式,并说出你的想法?

3、研究算式的特征。

① 观察  5×6=30(个)     6×5=30(个)

(6×12)×8=576(户)    6×(12×8)=576(户)

问题:这两组算式分别有什么特征?你发现了什么规律?

② 交流:每个同学过观察、分析和眼,把自己的想法相互交流、取长补短。

③ 汇报:让部分同学向全班汇报你研究的结果。

5×6 = 6×5             (6×12)×8 = 6×(12×8)

二、举例验证、得出定律

1、是不是类似这样的算式都有这些特征呢?以四人小组为单位一起来验证。

活动建议:① 每人自己出题验证

②  四人小组中交流验证题,并选一题写在黑板上。

2、小组活动

3、大组汇报、得出定律

① 观察各小组出题,找一找每组题有什么规律?引导出乘法交换律和结合律

② 让学生说一说什么是乘法交换律、结合律。

③ 如果用a、b、c表示任意的自然数,乘法交换律、结合律怎么表示?

a ×b =b ×a      (a×b )×c=a ×(b×c)

三、运用定律、进行简算

1、出示算式:8×3×125      25×37×4

让学生运用今天所学的知识写出与它们相等的式子

2、比较同学们所写的式子,你最欣赏的是哪一种?为什么?你有什么体会?

3、让学生用今天所学的知识,用自己最喜欢的方式计算下面各题?

396×25×4   125×19×8   8×25×125×4    *25×28   *125×32

4、校对讲评、对不同方法进行评价

四、巩固练习

1、是不是所有的乘法都能运用运算定律进行简算呢?

出示:能简算的打“√”,并说出简算的第一步。

25×34×4(   )   8×36×125(   )    43×25×9 (      )

35×64 (     )   24×125  (    )    36×25 (         )

小结:在什么情况下能够简算。

2、作业:怎样算简便就怎样算。

25×195×4    125×17×8      13×25×4     125×56

72×125       *25×125×4×9×8        *25×48×5

《乘法交换律、结合律》教案设计【第六篇】

《乘法交换律、结合律》教案设计

设计说明

根据学生的认知规律,在教学中我坚持“以学生为主体”的理念,突出“以学生发展为本”的教学思想,整个教学过程以学生自主学习、自主探究为主,通过学生的观察、验证、归纳、运用,让学生感受数学问题的探究性和挑战性。

1.猜谜激趣,唤醒旧知。

数学与生活有着密切的联系,借助生活中的现象激发学生探究数学的欲望,可以起到事半功倍的效果。在导入新课时,教师口述谜语,以猜谜的形式引入,有利于激发学生的学习兴趣。当学生猜出是纽扣之后,教师顺势牵引到数学学习中,让学生回忆:在数学学习中,哪个知识点涉及到交换位置呢?通过这样的提问,唤起学生对已有知识的回忆,同时也为学生的知识迁移埋下伏笔。

2.知识迁移,探究体验。

探究数学规律是有过程的,对于这个过程的认识不是教师传授的,而是学生自己体验和感受的,对学生已有的体验和感受及时地归纳总结是提高探究能力的重要环节。本节课突出“以学生发展为本”的教学思想,在教师的引导下,利用学生已经掌握的加法运算定律进行知识迁移,学生通过猜想,探究、归纳出乘法交换律和乘法结合律,并理解其作用,为后面的简便计算作铺垫。

课前准备

教师准备 多媒体课件 课堂活动卡

教学过程

⊙猜谜引入,揭示课题

师:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。请同学们想一想,这是什么?(生积极举手,低声喊“纽扣”)

师:你为什么会想到是纽扣? (纽错了,衣服穿出去会很难看,会让人笑话)

师:纽扣交换了位置,就会产生笑话,我们刚学的加法运算定律也和交换位置有关。谁能将加法交换律说给同学们听听?(交换两个加数的位置和不变,这就是加法交换律)

师:用字母如何表示加法交换律和加法结合律?乘法有没有类似的规律呢?今天我们就一起来探究一下与乘法有关的运算定律。(板书课题)

设计意图:用谜语拉开学习的序幕,既激发了学生学习的兴趣,又活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生探索规律作好了知识铺垫。

⊙探究新知

1.解读主题图,引出例题。

(1)(课件出示主题图)观察主题图,说一说,主题图中给出了哪些信息?(一共有25个小组,每组里4人负责挖坑、种树……)

(2)你能根据主题图提出哪些问题?

(教师引导学生提出例5、例6的问题)

①负责挖坑、种树的一共有多少人?

②一共要浇多少桶水?

2.教学乘法交换律。

(1)课件出示例5:负责挖坑、种树的一共有多少人?

(2)要想解决这个问题,需要哪些条件呢?

(一共有25个小组,每组里4人负责挖坑、种树)

(3)先想一想,再列式计算,然后在小组内相互交流。

(4)指名汇报计算过程和结果。

汇报,可能有两种列式方法:

方法一 4×25。

方法二 25×4。

师:两个算式的结果是否相等?两个算式之间可以用什么符号连接?你还能举出其他这样的例子吗?

生1:两个算式的结果是相等的,可以用等号连接。

生2:我列举的算式是8×25=25×8=200。

师:你能从中发现什么规律?能给乘法的这种规律起个名字吗?(学生总结,教师引导,课件出示后学生齐读,师板书:两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律)

(5)你能试着用字母表示吗?(学生汇报用字母表示:a×b=b×a)

(6)我们在原来的学习中用过乘法交换律吗?(用过,在进行乘法验算时)

(7)反馈练习。

①下面有两道题需要同学们运用乘法交换律进行填空。(教材25页“做一做”中第一排的两道题)

②数学小游戏。

师:同学们的`表现不错,所以老师决定做游戏奖励你们,这里有几道题,如果你认为这道题运用了乘法交换律就举手,如果你认为这道题没有运用乘法交换律就不举手。

3×15=5×9 a×b=b×a

34×0=0×34 8×3×9=8×9×3

3.教学乘法结合律。

师:加法有交换律和结合律,乘法也有交换律,那么乘法还可能有什么运算定律?选择例6作为研究对象来探究一下。

(1)课件出示例6:一共要浇多少桶水?

(2)要想解决这个问题,需要哪些条件呢?(一共有25个小组,每组要种5棵树,每棵树要浇2桶水)

(3)先想一想,再列式计算,然后在小组内相互交流。

学生独立解答,可能会出现两种不同的方法:

方法一 先求一共种了多少棵树,再求一共要浇多少桶水。

(25×5)×2

=125×2

=250(桶)

方法二 先求每组要浇多少桶水,再求一共要浇多少桶水。

25×(5×2)

=25×10

=250(桶)

(4)在这两个算式中,你们发现了什么?根据课件出示的活动卡,小组合作寻找规律。

出示小组合作学习的活动卡。(见课堂活动卡)

(5)小组汇报。

小组1:我们小组发现这两个算式的结果是一样的。

小组2:我们小组发现这两个算式的数字、运算符号、数字顺序、结果都相同,只有运算顺序不同。

小组3:我们小组发现三个数相乘,先乘前两个数,或者先乘后两个数,积不变。我们还举例进行了验证,如(30×5)×4=30×(5×4),125×(8×4)=(125×8)×4。

小组4:我们小组也发现了这个规律,并且根据加法结合律我们给这个规律起了个名字,叫乘法结合律。

师:同学们合作学习的成果真不少,你们发现的这个规律就是乘法结合律。

教师根据学生的汇报,板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

用字母表示:(a×b)×c=a×(b×c)

(6)反馈练习。

教材25页“做一做”中第二排的两道题。

提问:做这两道题时,你运用了什么运算定律?

设计意图:在教学过程中,采用小组合作的学习方式,通过观察、比较、举例、验证等活动,使学生在解决具体问题的过程中掌握乘法交换律和结合律,既关注了学生探究的过程,又培养了学生归纳概括的能力。

四年级数学乘法交换律教案【第七篇】

教学内容

四年级(下册)第61~62页。

教学目标

1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程

一、复习旧知、导入新课

1.出示:

你能在下列的 内填上合适的数吗?

28+320=320+ ;

(27+138)+62=27+( + );

35+ = +35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2.出示:

在下列○内填上合适的运算符号。

4○10=10○4 (2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3.导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。

二、举例验证探索规律

(一)探索乘法交换律。

1.情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

板书:3×5=5×3。

说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。

2.举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3.总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。

4.回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。

(二)探索乘法结合律。

1.初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

2.引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5×3)×4=5×(3×4)。

3.举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4.总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(a×b)×c=a×(b×c)。

说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。

乘法交换律教学设计【第八篇】

教学内容:

教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点:理解乘法交换律和乘法结合律。

教学难点:能运用乘法交换律和乘法结合律进行简便计算。

教学准备:多媒体。

教学方法:

尝试法、观察比较法。

教学过程:

一、复习导入

我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。

二、探究新知。

1、主题图引入

(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。

(2)你能提出哪些问题?(指定多名学生说一说。)

2、学习例1。

(1)出示例1:负责挖坑、种树的一共有多少人?

(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。

(3)学生独立列式计算。教师根据学生回答,边板书:

4×25=100(人)25×4=100(人)

(4)教师引导学生观察,比较两种解法有何异同。

启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?

(5)你能再举出几个这样的例子吗?(学生举例)

(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)

(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)

(8)让学生用自己喜欢的方式表示乘法交换律: a×b=b×a。让学生说一说:这里的`a、b可以是哪些数?

(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。

(10)我们学习哪些知识时用了乘法交换律?

(11)反馈练习:完成教材第35页“做一做”的第1题。

3、学习例2。

(1)出示例2:一共要浇多少桶水?

(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。

(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。

(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)

(5)哪一种方法计算起来更简便?

(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。

(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?

(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

(9)用字母怎样表示?(a×b)×c=a×(b×c)

(10)反馈练习:完成教材第37页的第2题。

4、乘法交换律和乘法结合律的应用。

(1)出示:怎样简便就怎样算?

5×37×2 125×4×8×25

(2)思考:怎样计算简便?

(3)学生独立完成,教师巡视指导,指定学生上台板演。

(4)集体订正,指定学生说一说各题运用了什么运算定律。

5、反馈练习:教材第35页“做一做”的第2题。

6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。

三、小结

学生小结本节课的学习内容。

教师引导学生回忆整节课的学习要点。

四、作业

《练习册》第14页第1课时的所有习题。

板书设计乘法交换律和乘法结合律

4×25=100(人)25×4=100(人)

4×25=25×4)a×b=b×a

(25×5)×2 25×(5×2)

=125×2 =25×10

=250(桶)=250(桶)

(25×5)×2=25×(5×2)

(a×b)×c=a×(b×c)

22 2526297
");