《求一个小数的近似数》教学设计【实用4篇】

零零七 分享 时间:

通过实例引导学生理解小数的近似数概念,运用数轴和四舍五入法进行教学,培养学生的实际应用能力和数学思维。下面由阿拉网友分享的“《求一个小数的近似数》教学设计”范文,供您写作参考,希望您喜欢。

《求一个小数的近似数》教学设计

《求一个小数的近似数》教学设计 篇1

教学目标

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

教学重点

求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.

教学难点

使学生能够区别求近似数与改写求准确数的方法.

教学步骤

一、铺垫孕伏.

1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的

二、探究新知.

1.导入新课.

我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是米,平常不需要说得那么精确,只说大约米或米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

2.教学例1:求一个小数的'近似数.

(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.

(2)出示例1:保留两位小数、一位小数和整数,它的近似数各是多少?

教师提问:保留两位小数,要看哪一位?怎样取近似数?

使学生明确:保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数

学生讨论:保留一位小数和整数,要看哪一位?怎样取近似数?

使学生明确:保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数 保留整数就要看十分位,十分位上满5,向前一位进一得到3.

分组讨论:保留一位小数十分位上的“0”能不能去掉?为什么?

教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

(3)求下面小数的近似数.

(保留一位小数)

(精确到百分位)

(4)讨论分析:和3数值相等,它们表示精确的程度怎样?

①教师出示线路图:(投影出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是,原来的长度在与之间.保留整数为3,原来的准确长度在与之间,所以比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.

(5)小结.

教师提出问题:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.

(6)分组合作学习,填表.

在下表的空格里按照要求填出近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数

3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.

(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?

(根据学生回答教师板书:61581400台=万台)

教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.

(2)做一做.

把248000改写成用“万”作单位的数.

4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.

(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?

学生独立改写成573000000吨=亿吨≈亿吨,并说出改写的方法.

教师提问:如果要求保留一位小数怎么办?

启发学生自己得出≈亿吨,并说出保留一位小数的方法.

教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.

(2)“做一做”第2题.

把750000000改写成用“亿”作单位的数.

“做一做”第3题.

把34562800000改写成用“亿”作单位的数后,保留两位小数.

5.区别对比.

例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)

三、巩固发展.

1.填空.

求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……

2.填空.

近似数的结果一般地说要比6精确.因为表示精确到了( )位,6表示精确到了( )位,所以后面的“0”不能丢掉.

3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?

4.按照四舍五入法写出表中各小数的近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数

5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.

(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.

四、全课小结.

今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.

五、布置作业.

1.把下面各小数四舍五入.

(1)精确到十分位:

(2)精确到百分位:

2.把下面各数改写成用“亿”作单位的数.

(1)保留一位小数:3672800000 648500000

(2)保留两位小数:4853900000 288160000

板书设计

求一个小数的近似数

例1 保留二位小数,一位小数和整数,它的近似数各是多少?

≈3

求一个小数的近似数要注意:

①要根据题目的要求取近似值.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

例 2 61581400台=万台

在万位右边点上小数点,在数的后面加写万字.

例3 573000000吨=亿吨 .亿吨

在亿位右边点上小数点,在数的后面加写亿字.

数学教案-求一个小数的近似数

《求一个小数的近似数》教学设计 篇2

教学目的:

●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重点:

能正确的求一个小数的近似数。

教学难点:

怎样准确的求一个小数的近似数。

教学过程:

、导入新课

师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

986534 58741 31200

50047 398010 14870

2、下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的。

[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

二、探究新知

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

师:豆豆的身高米,我们一般怎么表述豆豆的身高?

你是怎样得出豆豆身高的进似数的?

师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

生:

(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是还是1。教师出示线段图,看一看给学生带来什么启示。

引导学生小组讨论交流:使学生明确保留一位小数是,原来的长度在与之间。保留整数为1,原来的准确长度在与之间,所以比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

(3)保留整数部分应怎样思考,注意什么问题呢?

师:请同学们回忆求近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的.知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

(4)小结:

问:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的0应当保留,不能丢掉。

三、练习

(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

(5)出示租车说明,判断租多少辆车去出游?

师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

《求一个小数的近似数》教学设计 篇3

【教学目标】

1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】

使学生掌握求一个小数的近似数的方法。

【教学难点】

使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】

多媒体课件

【教学过程】:

一、课前预习

1、怎样用“四舍五入”法求出一位小数的近似数?

2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

二、展示交流

(一)创设情境,引入新知

课件出示豆豆,看看小豆豆的身高是多少呢?

今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法

1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

2、探究新知

(1)同桌讨论回忆什么是“四舍五入”法?

(2)讨论尝试

①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求的近似数

③保留一位小数时,末尾的“0”为什么应该写呢?

(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

1、出示教材第74页例2

①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

三、检测反馈

1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。第3、4题

四、板书设计教

求一个数的近似数

四舍五入

保留两位小数≈ 142800千米=万千米

保留一位小数≈ 778330000千米=亿千米

≈亿千米

保留整数≈1

注意:在表示近似数时,小数末尾的0不能去掉

教学反思:

现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的'碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

《求一个小数的近似数》教学设计 篇4

学习目标:

1、能够运用学过的知识来解决今天遇到的新问题。

2、能够根据要求用“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

3、主动学习,主动参与,认真倾听老师的提问,学生的发言,争当课堂上优秀的学习小主人。

教学重点:

能正确的求一个小数的近似数。

教学难点:

怎样准确的求一个小数的近似数。

学习过程:

一、 目标引领:

(一)、创设情境,复习较大数的近似数。

1.把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

986534      58741       31200

50047      398010      14870

2.下面的□里可以填上哪些数字?

32□645≈32万          47□05≈47万

学生填完后,说一说是怎么想的。

【设计意图:为了实现学生已有知识的`正迁移,通过联系生活中的事例,复习四舍五入法取较大数的近似数,同时对学生进行思想情感教育。】

你们知道我们在日常生活和计算中为什么要把整数改写成近似数吗?(为了方便,不必说出准确数),在实际生活中小数有时也不必说出的准确数,只要说出它的近似数就可以了。那怎么求一个小数的近似数呢?这就是今天老师要教给你们的另一个学习本领。你们想学吗?

(二)、认定目标,导入新课。

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

【设计意图:数学知识间有着紧密的联系,教师要相信学生能够通过已有知识的迁移解决新的问题,这样,学生在体验知识的实用性的同时,还能体验到尝试、探索的乐趣。】

[板书课题:求一个小数的近似数]

二、互动交流

(一)、初学交流

1、师:同学们,我们学校每学期要给你们进行体检,那你知道我们要体检的目的是什么吗?(指名说)豆豆的学校也非常关心他们的健康成长,她正在进行第一项身高的测量,我们去看一看好吗?

【设计意图:把生活中的实际问题抛给学生,在推想解决方法的过程中感受求小数近似数的应用价值,并对学生进行德育教育。】

2、出示主题图:

(1)从图中你得到了哪些数学信息?

A、指名说 B、要我们解决的问题什么?

(2)那是怎样得到的呢?

A、思考:要保留到哪个数位,观察哪个数位?

B、你的想法和同桌分享一下.

C、说你是怎么想的,其他学生做补充.

D、共同完成板书内容

(3)总结:你们刚才是利用什么方法求保留两位小数的?(也就是说小数的近似数也可以用”四舍五入”法来求) 你们太棒了,能运用我们学过的知识来解决新的问题。

(二)、合作引领

既然大家这么聪明,老师还想考考大家,你们敢于挑战吗?

1、保留一位小数是( ) 保留整数是( )

(1)独立思考:保留一位小数时应保留到哪个数位?观察哪个数位?保留整数呢?

(2)独立完成表格

(3)小组交流自己的想法:(如果你的错了,你一定弄明白错在哪里了)

(4)小组选代表汇报,其他组员做补充.

(5)观察比较一下和1有什么不同?( 总结出尽管两个数的大小相等,但表示的精确程度不同,它起到“占位和表示精确度”的作用,求近似数时,要想保留整数,小数末尾的零不能去掉。)

【设计意图:1与的区别是学生理解的难点,通过趣味性的实例可以让学生直观地感受到,结果精确到十分位要更接近实际情况,进而引出并理解“精确”这一词语。】

2、板书:观察,比较一下我们在求小数的近似数时需要注意什么呢?

3、小结:导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉。

三、 反馈提升

(一)、相机测评

1、填空

(1)求一个小数的近似数,要根据( )法来保留小数的数位,

保留整数时,表示精确到( )位,保留一位小数时,精确到( )

位,保留两位小数时,精确到(  )位.....

(2)近似数的结果一般的说比6精确,因为精确到了( ),6精确到了( )位,所以的末尾中的”0”不能去掉。

2、按要求写出表中小数的近似数。

保留整数

保留一位小数

保留两位小数

(二)、拓展提升:

一个两位小数精确到十分位后大约是那么,这个两位数最大可能是几?

最小可能是几?

四、全课总结:

1、数学课将结束了,你有哪些收获?在哪方面还需努力?

2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

22 3719750
");