《近似数》教学设计【汇集4篇】
【前言导读】此篇优秀教案“《近似数》教学设计【汇集4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
近似数【第一篇】
教学内容:
课本第77页例8及练习十六第6题。 授课日期 __年__月_ 日 星期
教学目标 :
1、 通过具体的情景让学生理解的含义,体会在生活中的作用。
2、 通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。
教学重、难点:
1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。
2、培养学生的数感和估计能力。
教学准备:教学挂图。
教学过程 :
一、准备练习
1、 接着数数。
1998、( )、( )、( )
9997、( )、( )、 ( )
497、( ) ( ) 、( )
2、按照要求排列下面各数。
1001 996 1008
( ) > ( ) > ( )
205 306 402
( ) < ( ) < ( )
[设计意图]复习旧知,为新知学习作好铺垫。
二、新课教学
1、组织理解的含义。
出示例8的主题图。
聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?
组织学生进行讨论、交流。思考:后半句约1500人是什么意思?
小组汇报:
A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。
B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。
师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做。(边说边板书)
引导学生明白更容易记,因为它正好是正百数。
出示例8主题图比较一下1506和1500这两个数,体会一下准确数和哪个数更容易记住
(2) 聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是( )人,先独立填填,再和你的同桌交流交流。谁来说说你写出的是多少?
个别汇报:
A、约是10000人,因为我觉得9992人接近10000人,
B、我写的是“约9990人”因为9992人和9990只相差2。
同学们你们同意哪位写的呢?为什么?
师生小结:我们用就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。
[设计意图]通过活动的学习,理解的含义,感受到的作用,同时掌握的写法。
2、请你说说身边的,找找生活中的。按照教师的要求,先独立想想,再和小组的同学交流。
3、组织活动3——猜一猜。
(1)(练习十六第9题)
提出题中的要求。
请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。
(2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?
及时肯定回答好的学生,并帮助学生总结应当怎样猜。
让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;
说一说:再互相说一说对方所摆事出的数的组成;
比一比:比较两个数的大小。
[设计意图]通过“说一说、猜一猜”活动让学生感受到与生活的联系。
三、课外训练
1、组织数学游戏——猜价格/
(1)电视节目“幸运52”猜商品价格的游戏大家看过吗?
其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。
(2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。
(3)进行第一轮猜数游戏。
[设计意图]此活动培养学生的思维能力和数感。
近似数【第二篇】
教学目标
1.使学生掌握亿级的数的大小比较方法。
2.会用“四舍五入法”求亿以上的数的近似数。
3.建立自然数的概念。
4.培养学生比较、分析的思维方法。
教学重点
比较亿以内的数的大小
教学难点
省略亿后面的尾数,求近似数
教学过程
一、教学自然数概念。
我们数物体的个数用的1,2,3,4,…,10,11,…叫做自然数。
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的。
提问:
1.一个物体也没有怎样表示?
是不是自然数?
引导学生得出:一个物体也没有,用0表示。0不是自然数。
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示。
二、教学整数大小的比较。
1.复习准备。
在下面○里填上“>”、“<”或“=”。
99999999○100000000 65432○75432 8909034○8908034
提问:
(1)每一组两个数是怎样比较的?
两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”。
(2)第二组两个数都是五位数,你是怎样比较的?
两个五位数比较,万位上大的那个数就大;所以应该填“<”。
(3)第三组的两个数你是怎样比较)(的?
这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位……相同数位上数大的那个数大,所以应填“>”。
2.新课引入。
我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小。(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小。
999999999○1000000000 654320000○754320000 8909034000○8908034000
第一组:
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)如果两个数的位数不同,怎样比较大小呢?
(两个数的位数不同,位数多的那个数大)
第二组:
思考:这两个数有什么特点?怎样比较它们的大小?
(这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”=
第三组:
提问:这两个数都是十位数,并且左起第一位都是8,你怎样比较?
(左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“ >”)
4.总结比较数的大小的方法。
提问:
(1)比较两个数的大小有几种情况?
(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?
5.练习。
比较下面每组中两个数的大小。
1231500000○9078000008036700000○796300000
40870000000○41050000000
三、教学求近似数。
1.复习。
我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数。
729380 5384000
提问:省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法。
2.新课引入。
省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容。(板书课题:求近似数)
3.出示例5、省略下面各数亿位后面的尾数,求它们的近似数。
(1)1034500000 (2)20897000000
学生试做,集体反馈
教师强调:省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少。
如第(1)题:
千万位上的数不满5,把亿位后面的尾数舍去。
如第(2)题;
千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1 4.总结求近似数的方法。
求一个整数的近似数,要看所省略尾数的左起第一位上的数是不是满5.如果不满5,就把尾数都舍去;如果满5,把尾数都去后,要在它的前一位上加1.
四、课堂练习。
1.写出最大的九位数和最小的十位数。
提问:应该怎样想?
(要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数。同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000)
2.判断正误。
4528800000=45亿( )
1214000000人≈12亿( )
608754000000≈6088( )
强调三种错误原因:
(1)求近似数应用“≈”符号。
(2)省略尾数后不要忘记写单位名称。
(3)求出一个数的近似数后,要写上计数单位。
3.总结性提问:
(1)怎样比较两个整数的大小?
(2)怎样省略亿后面的尾数,求它的近似数?
五、课后作业 .
1.省略下面各数亿位后面的尾数,求出它们的近似数。
428000000 668000000 5083000000
2.先写出下面各数,再用“亿”作单位写出它们的近似数。
二亿零八百九十六万 五十九亿八千三百万
四亿九千九百七十万 六百二十九亿四千万
六、板书设计。
近似数【第三篇】
教学内容: 教材第126~127页例1、练一练,练习二十六第1~5题。
教学目标 :
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3.进一步培养学生运用旧知和类比推理的能力。
教学重点:求一个小数的近似数。
教学难点 :使学生能够区别求近似数与改写求准确数的方法。
教具准备: 小黑板,投影。
教学步骤
(一)铺垫孕伏
1.把下面各数省略万后面的尾数,求出它们的近似数。(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的。
(二)探究新知
1.导入 新课:
我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:量得大新的身高是米,平常不需要说得那么精确,只说大约米或米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数。
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数。
(2)出示例1。
保留整数、一位小数和两位小数,它的近似数各是多少?
教师提问:保留整数,要看哪一位?怎样取近似数?
使学生明确:保留整数,就要看十分位,十分位满5,向前一位进一,求得近似值数5.
学生讨论:保留一位小数和两位小数,要看哪一位?怎样取近似数?
使学生明确:保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数 保留两位小数就要看千分位,千分位上不满5,舍去。
分组讨论:保留一位小数十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)讨论分析:和5数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是,原来的长度在与之间。保留整数为5,原来的准确长度在与之间,所以比5精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
(4)小结:
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。
(5)“练一练”分组合作学习。
(三)巩固发展
1.填空:
求一个小数的近似数,要根据需要用( )法保留小数数位。保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空:
近似数的结果一般地说要比6精确。因为表示精确到了( )位,6表示精确到了( )位,所以后面的“0”不能丢掉。
3.练习二十六第1题。
按照四舍五入法写出表中各小数的近似数。
保 留
整 数
保 留
一位小数
保 留
两位小数
保 留
三位小数
4.练习二十六第4、5题
学生口答。
(四)全课小结
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似。要用“四合五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。
(五)布置作业
练习二十六第2、3题。
近似数【第四篇】
教学目标
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
教学重点
使学生掌握求一个小数的近似数的`方法。
教学难点
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
教具
多媒体课件
教学过程:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
上一篇:《爱的教育》(实用3篇)
下一篇:李时珍夜宿古寺优推4篇