一元一次方程的解法教案【实用14篇】
通过代数运算和图像法,掌握一元一次方程的解法,理解方程的意义与应用,能否灵活运用?以下是网友为大家整理分享的“一元一次方程的解法教案”相关范文,供您参考学习!
一元一次方程的解法教案 篇1
第一节:从问题到方程
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
第二节:解一元一次方程
一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
第三节:用一元一次方程解决问题
(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.
(2)找出等量关系:找出能够表示本题含义的相等关系.
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.
一元一次方程的解法教案 篇2
一、教材分析:
1、主要内容:一元一次方程的解法第一课时
2、教材中的地位与作用:一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。本节课是在教授了一元一次方程解法第一课时因此尤为重要。同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
3、教学重点:熟练运用等式性质和移项解一元一次方程。
教学难点:学生如何在已有的基础上根据不同形式的问题选择合适的解题方法。
二、教学目标:
(1)知识与技能:初步学习一元一次方程的一般解法,进一步巩固等式性质。
(2)过程与方法:通过寻找解题方法,提高学生发散思维能力,逐步培养创新意识。
(3)情感、态度与价值观:在教学过程中,充分体现和谐、简洁之美,使学生在获取知识的.同时,又能对所学内容产生浓厚的兴趣,增强求知欲。
三、教法方法:自学探究指导法
学法探究:自主、合作、探究学习法教学手段:多媒体辅助教学初步设想简单问题由学生自主完成,难度稍大同桌或小组互助完成,知识拓展由小组间互助完成,即同桌对学,小组对学,互查互助,学友展示师傅补充。
四、课前准备
1、导学案的使用:由于七年级是课改的年段,教师在新课前一天将学习目标、学习内容、思路和方法等以“预习案”的形式明确给学生,学习目标、思路和方法要有层次性和逻辑性。并印发“探究案”和“测评案”(三案合一),有意识地引导学生在课前自学。
2、分组:两个差异较大的学生结成一个学习对子,即:师傅和学友。三个学习对子为一个学习小组。桌椅按照面对面排列。每一对学习对子中的师傅负责徒弟的学习,六人中挑选综合能力最优者为组长,负责本组合作学习的总组织者
和协调者。相邻的两个小组为结对组。班级同学般6人一组,其中优中差相结合,不仅考虑数学学科同时考虑其他学科,由于学生各科不均衡,师徒角色有时会转化。
五、教学流程一)、基础知识链接
本环节设置三个方面的内容分别是(1)温故知新复习巩固难点重现。(2)概念回顾承上启下识记运用。(3)新知初探自主学习合作认知。
1、复习回顾
(1)下列是一元一次方程的是()
A、x2+x=0B、x—y=0C、y—2=0D、110xm
(2)、如果3x+2=0是关于x的一元一次方程,那么m=__(3)如果(k+1)x|k|+21=0是一元一次方程,则k=_______
2、等式的性质
(1)等式的性质1:等式的两边加(或减)(或式子)结果仍相等。
(2)等式的性质2:等式的两边乘以同一个数,或除以结果仍相等
3、移项:把等式一边的某一项移到等号的另一边叫做移项。
(1)x+3=7移项得x=7—()
(2)3x+4=5x移项得4=5x—()学生通过观察分析、独立思考,自主探究,学会解决问题。
二)、基础知识巩固
在新知初探的基础上引进对移项的探究,旧知识与新知识结合更利于掌握移项的理论基础。本环节设置6道题分成3个层次同桌互助、小组互助、对组合作乃至全班大范围交流。
小组探究,合作互助(试解下列一元一次方程)(1)—2x=4(2)x+5=2
(3)—5y=—3y+2(4)3m+7=32—2m(5)x—3=3x+1(6)2、5y+10y—15=6y—21、5、2本环节为解决问题的核心初级阶段尽量由学生完成,成熟之后由学生自主或互助完成,机动灵活地调整教学方式,进行教学实施
三)、基础知识拓展
本环节是将探究完全放手给学生通过重点重现,难点分解,小步距教学,变换问题的呈现方式,学生的学习方式,并对学生灵活学习方法进行探究,引导学生以学习小组的形式进行合作学习。并通过组内、组间交流,让他们在集体的思想碰撞中,寻求答案。既攻破了疑难,又锻炼了学生的能力。
1.如果—3x2a—1+6=0是一元一次方程,那么a=。
2、方程(a2—1)x2+(a—1)x+1=0是关于x的一元一次方程,则a=。
3、当m=__时,方程2x+m=x+1的解为x=-4、
4、若x=2是方程2x-a=7的解,那么a=___
5.如果5a2b2m+1与—2a2bm+3是同类项,则m=。
6、关于x的方程2x-4=3m和x+2=1有相同的解,那么m=_____
四)当堂检测
巩固训练,稳步提升,习题数量少,难易适中,有利于学生建立自信心,个人认为学习与孩子们的快乐成长相比较学生的快乐更重要。
五)归纳总结知识提升
归纳总结纳入系统,交流反思提高认知六)、布置作业巩固提高(课后跟踪训练)
这组题的设计目的是“趁热打铁”,进一步激发学生学习兴趣,加深所学知识的印象。采用形式完全由学生自主合作完成,努力培养学生的观察能力、思维能力,增加学生“成就感”激发学生的求知欲。
1、解方程:
(1)2x12x1(2)53(y)33(3)—5x—7=2x—11 2a—9a
2、若与互为相反数,求a的值。
32
3、用一根长10cm的铁丝围成一个长方形,已知长比宽多1、4cm,求长方形的长和宽。
4、求作一个方程,使它的解为—5,且未知数的系数为2,试列出一个满足条件的方程。
5、在”希望工程”义演中,成人票8元,学生票5元,一共售出1000张票。所得的票款可能是6932元吗?如果可能。成人票比学生票多售出多少张?
本环节设计构想是加深对所学知识的理解,并能得到运用和发展,并且使知识技能转化为能力,真正做到知识的“活学活用”。
六、设计说明
本节课是课改新型课,而课改又处于尝试阶段,设计理念是自始至终我都是有意识培养学生动眼、动口、动手、动脑能力,使学生始终处于一种积极心态下去完成学习任务。极大调动学生的学习主动性,并使刚学过的知识上升到一个新的高度,同时也培养了学生的创新意识。但由于教法处于尝试阶段,而我又能力有限,设计中一定会有不足希望各位同仁批评指正。
一元一次方程的解法教案 篇3
教材分析:
本节课知识与前面几个课时密切相连,是学习解一元一次方程方法的最后一节课。在掌握知识方面不仅要求学生学会去分母解方程的方法,更要把前面所学的知识与之融会贯通,能够按照去分母、去括号、移项、合并同类项、系数化为1的顺序,有目的、有步骤的求一元一次方程的解,并达到灵活运用。从而体会并掌握解一元一次方程的化归思想,提高运算能力。
学生情况分析:
尽管学生已经在前面几节课学习了一些解一元一次方程的步骤,但是去分母的原理和容易错的地方仍然是这解课需要解决的重点和难点。通过合作探究让学生体验知识的形成和运用的过程,提高学生学习的主动*,帮助学生的数学学习。
学习目标:
知识与能力:
1、使学生掌握含有分数系数的一元一次方程的解法;
2、对解方程的步骤有整体的了解。
过程与方法:
1、通过去分母解方程,体会数学的“化归”的思想方法;
2、通过归纳一元一次方程解法的一般步骤,体会解方程的程序化思想方法。
情感态度与价值观:
培养学生自觉探索意识,让学生在解题中享受到成功的喜悦。
学习重点:
用去分母的方法解一元一次方程
学习难点:
能正确地运用去分母的方法解方程
学习突破点:
(1)找对分母的最小公倍数
(2)强调方程两边各项都要乘以最小公倍数
(3)去括号时要注意符号和乘法分配率的的正确使用。
学习流程安排:
一、实际问题——探究去分母的方法
列方程解决数学问题,感受方程是刻画量与量之间关系的主要模型之一.同时以学生已有的关于等式*质的数学知识为基础,探索利用“去分母”的方法解一元一次方程。
二、例题分析——规范去分母过程
用“去分母”的方法解一元一次方程,掌握“去分母”的方法解一元一次方程应注意的事项.
三、巩固练习——完善解方程程序
归纳一元一次方程解法的一般步骤.
四、小结提升——体会数学思想
总结本节收获,体会其中蕴涵的化归等数学思想.
学习过程设计:
一、实际问题——探究去分母的方法
前面学习了一元一次方程,现在有这样一个问题看同学们能不能解决。
问题(1):一个数,它的三分之二,它的一半,它的四分之一,加起来共是17,这个数是多少?能不能用方程解决这个问题?
问题(2):你能尝试解这个方程吗?(引导学生自主学习,师生共同总结不同的解法。)
问题(3):不同的解法有什么各自的特点?
①直接用分数系数合并同类项
②利用等式*质去分母
如果学生不能回答出第二种解法,教师可以引导学生回顾等式*质来帮助解决。
教师引导学生分析并对比两种解法,得到共识:当方程中含有分数系数时,先去分母可以使未知数的系数变为整数,从而解题更加方便、快捷.
教师引出本节课题:解一元一次方程—去分母
本次活动中,教师应重点关注:
(1)学生能否体会到“去分母”的必要*;
(2)学生是否明确“去分母”的可行*;
二、例题分析——规范去分母过程
1、学生初步尝试,感受去分母的必要*。
例1:解方程
2、学生分小组进行讨论,派代表发言。
例2:解方程
提问(1)第一步要做什么?为什么要这样做?
(2)怎样去分母,这有什么根据?
(3)去分母后会出现怎样的需要注意的问题?
(4)下面还有怎样的步骤?(学生*完成)
3、师生共同总结:
○1为了去掉方程中的分母,第一步应该找到这三个分母的最小公倍数。最小公倍数是10;
○2方程的每一项都乘以10,这是根据等式的基本*质:等式的两边同时乘以或除以一个不为零的数,等式仍成立;
○3去掉分母后的分子如果是单项式的话应加括号;
○4接下来还有去括号,移项,合并同类型和系数化1
小结:通过老师的示例和学生与老师共同的边做边答,不仅能让学生对去分母的方法有更深的印象;而且对解题过程中可能出现的问题也有了深刻的印象;并且理顺了学生解一元一次方程的步骤。
三、巩固练习——完善解题程序,归纳一般步骤。
(1)梯度练习
1、选择题
一元一次方程去括号后得到()
a3x+5+1=2-2x+1b2(3x+5)+1=2-(2x+1)
c2(3x+5)+6=12-2x+1d2(3x+5)+6=12-(2x+1)
2、解下列一元一次方程
a
b1+
c当x等于什么数时,x-的值与7-的值相等?
(2)同学之间交流,找出问题,进行纠正。
(3)提问:
①通过解以上的方程,你能总结出解一元一次方程的步骤吗?你知道每种变形的依据吗?
○2通过解以上的方程,你觉得那些环节是值得同学们需要注意的?
小结:在学生总结出解方程的一般步骤后,说明不同的方程有不同的解法,不能生搬硬套这个步骤。让学生感受学生解题要根据题目特点,选择适合的解题步骤。
四、小结提升,总结收获。
现在我们回想一下本节课都学到了哪些内容?
教师指板书共同复述:去分母的方法:
依据:
解方程过程中需注意:
解方程一般步骤:(教师提醒:需要哪些步骤取决于方程)
最终化成的形式:
五、作业自助餐:
102页:(1)(2)较容易
(3)(4)稍有难度
教学反思:
通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材辅导。
板书设计
解一元一次方程———去分母
去分母————方程两边各项都乘分母最小公倍数
去括号————乘法分配率括号法则
移项————要变号
合并同类项
系数化1
一元一次方程的解法教案 篇4
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果||=9,则=;如果2=9,则=
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是()
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()
A、,互为倒数B、,互为相反数C、,都是0D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()
A、B、C、D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()
A、+25=310B、+(+25)=310C、2[+(+25)]=310D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回元。已知每个笔记本比练习本贵元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是()
A、B、C、D、
(2)下列方程中,属于一元一次方程的是()
A、B、C、D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了场,依题意可列得方程:
解得=
答:甲队胜了场,平了场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业
P151习题。
一元一次方程的解法教案 篇5
1.移项法则
(1)定义
把原方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.
例如:
(2)移项的依据:等式的基本性质1.
辨误区移项时的注意事项
①移项是将方程中某一项从方程的一边移到另一边,不是左边或右边某些项的交换;②移项时要变号,不能出现不变号就移项的情况.
【例1】下列方程中,移项正确的是().
A.方程10-x=4变形为-x=10-4
B.方程6x-2=4x+4变形为6x-4x=4+2
C.方程10=2x+4-x变形为10=2x-x+4
D.方程3-4x=x+8变形为x-4x=8-3
解析:选项A中应变形为-x=4-10;选项C中不是移项,只是交换了两项的位置,正确的移项是-2x+x=4-10;选项D中应变形为-4x-x=8-3,只有选项B是正确的.
答案:B
2.解一元一次方程的一般步骤
(1)解一元一次方程的步骤
去分母→去括号→移项→合并同类项→未知数的系数化为1.
上述步骤中,都是一元一次方程的变形方法,经过这些变形,方程变得简单易解,而方程的解并未改变.
(2)解一元一次方程的具体做法
变形
名称具体做法变形依据注意事项
去分母两边同时乘各分母的最小公倍数等式的基本性质2不要漏乘不含分母的项
去括号先去小括号,再去中括号,最后去大括号去括号法则、乘法分配律不要漏乘括号内的每一项,注意符号
移项含有未知数的项移到方程的一边,常数项移到另一边等式的基本性质1移项要变号,不要漏项
合并
同类
项把方程化成ax=b(a≠0)的形式合并同类项法则系数相加,字母及指数不变
系数
化为1两边都除以未知数的系数等式的基本性质2分子、分母不要颠倒
【例2-1】解方程:4x+5=-3+2x.
分析:按以下步骤解方程:
解:移项,得4x-2x=-3-5.
合并同类项,得2x=-8.
系数化为1,得x=-4.
【例2-2】解方程65100(y-1)=37100(y+1)+
分析:方程中既含有分母,又含有括号,根据方程的形式特点,还是先去分母比较简便.
解:去分母,得65(y-1)=37(y+1)+10.
去括号,得65y-65=37y+37+10.
移项,得65y-37y=37+10+65.
合并同类项,得28y=112.
系数化为1,得y=4.
点评:解一元一次方程,要注意根据方程的特点灵活运用解一元一次方程的一般步骤,不一定非按这个“一般步骤”的顺序,适合先去分母的要先去分母,适合先去括号的要先去括号,去分母、去括号时,注意不要出现漏乘,尤其是注意不要漏乘常数项,移项时要注意变号.
3.分子、分母中含有小数的一元一次方程的解法
当分子、分母中含有小数时,一般是先根据分数的基本性质,将分数的分子、分母同乘以一个适当的整数,将其中的小数化为整数再解方程.需要注意的`是这一步变形根据的是分数的基本性质,而不是等式的基本性质;变形时是分数的分子、分母同乘以一个适当的整数,而不是在方程的两边同乘以一个整数.
【例3】解方程+-+×=1.
分析:原方程的分子、分母中都含有小数,利用分数的基本性质,方程中+的分子、分母都乘以10,+×的分子、分母都乘以100,就能将方程中的所有小数化为整数.
解:原方程可化为4x+95-3+2×3=1.
去分母,得3(4x+9)-5(3+2x)=15.
去括号,得12x+27-15-10x=15.
移项、合并同类项,得2x=3.
系数化为1,得x=32.
4.带多层括号的一元一次方程的解法
一元一次方程,除个别题外,一般都有几层括号,一般方法是按照“由内到外”的顺序去括号,即先去小括号,再去中括号,最后去大括号.每去一层括号合并同类项一次,以简化运算.
有时可根据方程的特征,灵活选择去括号的顺序,从而达到快速解题的目的.
在解具体的某个方程时,要仔细观察方程的特点,根据方程的特点灵活选择解法.
【例4】233212(x-1)-3-3=3.
分析:若先去小括号,再去中括号,再去大括号,然后再运算比较麻烦.注意到32×23=1,因而可先去大括号,在去大括号的同时也去掉了中括号,这样既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得12(x-1)-3-2=3.
去小括号,得12x-12-3-2=3.
移项,得12x=12+3+2+3.
合并同类项,得12x=172.
系数化为1,得x=17.
5.含有字母系数的一元一次方程的解法
含有字母系数的一元一次方程的解法与一般一元一次方程的解法步骤完全相同:去分母→去括号→移项→合并同类项→系数化为1.要特别注意的是系数化为1时,当未知数的系数是字母时,要分情况讨论.
关于x的方程ax=b的解的情况:
①当a≠0时,方程有唯一的解x=ba;②当a=0,且b=0时,方程有无数解;③当a=0,且b≠0时,方程无解.
【例5】解关于x的方程3x-2=mx.
分析:本题中未知数是x,m是已知数,先通过移项、合并同类项把方程变形为ax=b的形式,再讨论.
解:移项,得3x-mx=2,
即(3-m)x=2.
当3-m≠0时,两边都除以3-m,
得x=23-m.
当3-m=0时,则有0x=2,此时,方程无解.
点评:解含有字母系数的方程要不要讨论,关键是看解方程的最后一步,在系数化为1的时候,当未知数的系数是数字时,不用讨论,当未知数的系数含有字母时,必须分情况讨论.
一元一次方程的解法教案 篇6
教学目标
1.使学生正确认识含有字母系数的一元一次方程.
2.使学生掌握含有字母系数的一元一次方程的解法.
3.使学生会进行简单的公式变形.
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.
教学重点:
(1)含有字母系数的一元一次方程的解法.
(2)公式变形.
教学难点:
(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.
教学方法
启发式教学和讨论式教学相结合
教学手段
多媒体
教学过程
(一)复习提问
提出问题:
1.什么是一元一次方程?
在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.
2.解一元一次方程的步骤是什么?
答:(1)去分母、去括号.
(2)移项——未知项移到等号一边常数项移到等号另一边.
注意:移项要变号.
(3)合并同类项——提未知数.
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.
(二)引入新课
提出问题:一个数的a倍(a≠0)等于b,求这个数.
引导学生列出方程:ax=b(a≠0).
让学生讨论:
(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)
(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)
强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.
(三)新课
1.含有字母系数的一元一次方程的定义
ax=b(a≠0)中对于未知数x来说a是x的.系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.
2.含有字母系数的一元一次方程的解法
教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:
ax=b(a≠0).
由学生讨论这个解法的思路对不对,解的过程对不对?
在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.
含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)
特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.
3.讲解例题
例1 解方程ax+b2=bx+a2(a≠b).
解:移项,得 ax-bx=a2-b2,
合并同类项,得(a-b)x=a2-b2.
∵a≠b,∴a-b≠0.
x=a+b.
注意:
1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.
2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).
3.方
例2、解方程
分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.
解:b(x-b)=2ab-a(x-a)(a+b≠0).
bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母.)
ba+ax=a2+2ab+b2
(a+b)x=(a+b)2.
∵a+b≠0,
∴x=a+b.
(四)课堂练习
解下列方程:
教材练习题1—4.
补充练习:
(x+b)=b2(x+a)(a2≠b2).
解:a2x+a2b=b2x+ab2
(a2-b2)x=ab(b-a).
∵a2≠b2,∴a2-b2≠0
解:2x(a-3)-(a+2)(a-3)=x(a+2)
(a-b)x=(a+2)(a-3).
∵a≠8,∴a-8≠0
(五)小结
1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系.
2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同.但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零.
六、布置作业
教材组1—6;B组1、
注意:A组第6题要给些提示.
七、板书设计
探究活动
a=bc 型数量关系
问题引入:
问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)
提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。
1、由学生讨论,得出结论。
2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总
长度为b,单位长度的质量为c,a,b,c之间有什么关系?
由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量 ,再称
出其余电线的总质量 ,则 (米)是其余电线的长度,所以这捆电线的总长度为( )米。
引出可题:探究活动:a=bc型数量关系。
1、b、c之一为定值时.
读课本—并填表1和表2中发现a=bc型数量关系有什么规律和特点?
(1)分析表1
表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比
较:宽c=1,长由2变为4。
面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。
得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。
(2)分析表2
(1)表2从理论上证明了对表1的分析的结果。
(2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)
(3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是
我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。
2、为定值时
读书—,填空,自己试着分析数据,看到出什么结论?
分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。
可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。
这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。
3、实际问题中,常见的a=bc型数量关系。
(1)总价=单价×货物数量;
(2)利息=利率×本金;
(3)路程=速度×时间;
(4)工作量=效率×时间;
(5)质量=密度×体积。
… 例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。
策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。
解:y=2n
总结:本题考查a=bc型关系式,解题关键是弄清数量关系。
例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。
解:s=30t
例3、一种储蓄的年利率为%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。
解:y=%x
程的解是分式形式时,一般要化成最简分式或整式.
一元一次方程的解法教案 篇7
教学目标:
1.使学生进一步掌握解一元一次方程的移项规律。
2.掌握带有括号的一元一次方程的解法;
3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.
教学重点:
带有括号的一元一次方程的解法.
教学难点:
解一元一次方程的移项规律.
教学手段:
引导——活动——讨论
教学方法:
启发式教学
教学过程
(一)、情境创设:
知识复习
(二)引导探究:带括号的方程的解法。
例(x-2)-3(4x-1)=9(1-x).
解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)
去括号,得:
移项,得:
合并同类项,得:
系数化1,得:
遇有带括号的一元一次方程的解法步骤:
(三)练习:(A)组
1.下列方程的解法对不对?若不对怎样改正?
解方程2(x+3)-5(1-x)=3(x-1)
解:2x+3-5-5x=3x-1,
2x-5x-3x=3+5-3,
-6x=-1,
2.解方程:
(1)10y+7=12-5-3y;(2)=
3.解方程:
(1)3(y+4)12;(2)2-(1-z)=-2;
(B)组
(1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);
(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)
(四)教学小结
本节课都教学哪些内容?
哪些思想方法?
应注意什么?
以上是一元一次方程的解法教案的相关内容,希望对你有所帮助。另外,今天的内容就分享到这里了,想要了解更多的朋友可以多多关注本站。
一元一次方程的解法教案 篇8
教学目标
(一)知识认知要求
1、认识一元一次方程与一次函数问题的转化关系;
2、学会用图象法求解方程;
3、进一步理解数形结合思想;
(二)能力训练要求
1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;
2、训练大家能利用数学知识去解决实际问题的能力。
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
教学重点与难点
1、理解一元一次不方程与一次函数的.转化及本质联系。
2、掌握用图象求解方程的方法。
教学过程
一、提出问题
(1)方程2x+20=0;(2)函数y=2x+20
观察思考:二者之间有什么联系?
从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值
从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解
根据上述问题,教师启发学生思考:
根据学生回答,教师总结:
由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。
二、典型例题:
例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?
一元一次方程的解法教案 篇9
教学目标:
1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。
2、通过观察,归纳一元一次方程的概念。
3、理解等式的基本性质,并利用等式的基本性质解一元一次方程。
4、培养学生自主学习的意识,增强合作交流的能力。
教学重点、难点
教学重点:对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程。
教学难点:对等式基本性质的理解与运用。
教学过程:
一:情境导入
多媒体展示古代一趣味问题:
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何14
设计理念:设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质.
二:导入课题
一元一次方程及其解法
三:问题情境导入
问题1:在参加20xx年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会的跳水运动员有多少人?如果设参加奥运会的跳水运动员有x人,则根据题意可列出方程:
2x-4=18 1
问题2:王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?如果设再过x年,则x年后王玲的年龄是()岁
则x年后爸爸的年龄是()岁
由题意可得:(先让学生做,然后交流。)
设计理念:引导学生用数学眼光去发现周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题。
四:想一想
看看式子:
2x-4=18
36+x=2(12+x)
1、它们属于我们小学里学过的什么内容?
方程:含有未知数的等式叫方程。
2、上面的两个方程的左右两边的式子属于我们学过的代数式中的哪一类式子?
它们都是整式
3、如果方程的两边都是整式,我们就把这样的方程叫整式方程。
设计理念:通过创设愉悦的问题情景,引起学生的学习兴趣,给学生提供经15历从多角度寻求不等关系的过程,在轻松欢快中探索问题,解决问题。
五:合作探究
观察方程:2x-4=18
36+x=2(12+x)
这两个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)
一元一次方程:象上面的两个方程,只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。
设计理念:完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。
六:相信你会判断
判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1)x+3y=4
()
(2)x2—2x=6
()
(3)—6x=0
()
(4)2m+n=0
()
(5)2x—y=8
()
七、回顾交流
1:请同学们自己写出几个一元一次方程的例子。
2:请同学们回顾一下什么叫方程的解?
方程的解:使方程左右两边相等的未知数的’值叫方程的解。
3:解方程:求方程解的过程叫做解方程。
估一估:判断括号里的数是不是方程的解
1、2x-4=18(x=11)
2、36+x=2(12+x)(x=12)
3、3x+1=7(x=3)
设计理念:通过设置的问题,形成问题串,逐步深入,引导发现,通过提问,把学生逐步引入问题情境中,并且问题具有一定的梯度和层次,对学生的思考有一定的引导启发作用。培养其勇于探索的精神,画出相应的示意图解决问题是解应用题的一个重要手段,要使学生学会利用不同的示意图解决问题。
八、知识导航
我们在小学里已经学过等式的基本性质,谁能告诉老师等式基本性质的内容吗?
等式的基本性质
1、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
2、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
九、做一做
说明下列变形是根据等式的哪一条基本性质得到的?
1、如果5x+3=7,那么5x=4
2、如果-8x=16,那么x=-2
3、如果-5a=—5b,那么a=b
4、如果3x=2x+1,那么x=1
十、课堂小结
1、通过这节课的学习,你有哪些收获?你还有哪些疑问?
十一、作业:
1、课堂作业p91页习题3、1第2题
2、课后预习下一节。
预习要点:
1、什么叫移项?
2、会用移项的方法解一元一次方程。
小结:
这节课是从学生的实际问题出发,结合新课标准的理念,创造性使用教材而设计的一节课,是继前面有了经历将实际问题转化为数学问题的过程的经验后,体验文字语言、图形语言、符号语言的互相转换。本节的设计是从学生感兴趣的情境入手,通过画线段获取信息,经历从不同的角度寻求不同的不等关系。形成解决问题的一些基本策略,提高学生综合分析问题、解决问题的能力。经历分析寻求不同的等量关系的过程,体验解决问题策略的多样性,发展创新能力。通过本节教学使学生初步感受“数学建模”的方法,能更好地发展学生有条理地进行思考和表达,故本节课有承上启下的作用。
一元一次方程的解法教案 篇10
教学目标:
1、能说出什么叫一元一次方程;
2、知道“元”和“次”的含义;
3、熟练掌握最简一元一次方程的解法及理论依据;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的教学,了解化归的数学思想、
德育目标:
1、渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
1、一元一次方程的概念;
2、最简方程的解法;
难点:正确地解最简方程。
教学方法:引导发现法
教学过程
一、旧知识的复习:
1、什么叫等式?等式具有哪些性质?
2、什么叫方程?方程的解?解方程?
二、新知识的教学:
观察下列方程:…
想一想:这些方程有什么共同特点?(学生思考后回答)
特点:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
(板书课题,学生总结定义)
定义:只含有一个未知数并且未知数的次数都是一次的方程叫做一元一次方程。
强调:“元”指什么?(未知数的个数)
“次”指什么?(方程中含有未知数项的最高次数)
想一想:
(1)你认为最简单的一元一次方程是什么样的?
(学生举例说明后总结出最简方程)
最简方程:我们把形如(其中是未知数)的方
程称为最简方程。
强调:为什么?
(2)怎样求最简方程(其中是未知数)的解?
三、解下列方程
① ②
③ ④
(学生探讨求解过程及理论依据后板书解题过程)
解:①根据等式的基本性质2,在方程两边同除以3,
未知数系数化为1,得
②③④解法略
强调:检验解的方法。
想一想:
解最简方程(其中是未知数)时的主要思路是什么?解题的关键步骤是什么?
(引导学生思考后回答)
主要思路:把最简方程的’未知数的系数化为1,变形为的形式;
解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解。
强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?()
②最简方程一定有唯一的一个解。
四、巩固练习
1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:
3、课堂小结:
五、本节学习的主要内容
1、一元一次方程定义;
2、最简方程(其中是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
六、课堂作业
A、解下列方程:
B、如果关于的方程是一元一次方程,求的值;
C、解关于的方程:
一元一次方程的解法教案 篇11
教学目标:
一、知识和技能:
㈠知识目标:
1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
㈡能力目标:
数学思考:能结合实际问题背景发现和提出数学问题。
解决问题:能利用一元一次方程解决商品销售中的一些实际问题
二、过程与方法:
经历“探究”的活动,激发学生的学习潜能,促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.
三、情感态度与价值观目标:
1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.
2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.
教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.
教学难点:找到问题中的数量关系,将未知数参与其中的`代数式用 “=”连接起来,使之构成方程.
教学关键:明确问题中的数量关系,找出等量关系.
教学课型:新授课
课时安排:一课时
教学方法:启发式讲授,与学生探索相结合,情境教学法。
教学准备:幻灯片出示探究题目,三四个可供标价的纸板
教学过程:
一、引入新课
做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?) →→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。
(1)商品利润=商品售价-商品进价.
(2)商品利润率= .
(3)打x折的售价=原售价× .
二、新授
第一大部分
探究1:销售中的盈亏.
某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
①由学生借以往经验解决(极有可能使用四则运算),作出判断.
②要求应用方程
再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设
④学生自主修整完成该方程,进而解决问题.
解:设……………………
————————=———
……………………
……………………
答:…………………….
另外:求出方程的解后,一定要检验解的合理性.
题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.
第一大部分附题
随堂练习1:
刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?
分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。
“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?
解:设……………………
————————=———
……………………
……………………
答:…………………….
求出方程的解后,一定要检验解的合理性.
随堂练习2:较难的一道利润问题
某商品去年提价25%,今年要恢复原价,应下调几个百分点?
分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.
Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x
Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调
m个百分点.
Ⅳ
一元一次方程的解法教案 篇12
学习目标
1.了解一元一次方程及其相关概念
2.掌握等式的性质,理解掌握移项法则
3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法
4.能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力
5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
重点
重点:解方程、用方程解决实际问题
难点:用方程解决实际问题
教学流程
师生活动时间复备标注
一、结合课本112页知识结构图和回顾与思考中的问题,复习本章的知识点,形成框架,巩固重点知识
二、典例回顾
1.一元一次方程的概念:
例1.试判断下列方程是否为一元一次方程.
(1).x=5(2).x2+3x=2(3).2x+3y=5
2.一元一次方程的解(根):
判断下列x值是否为方程3x-5=6x+4的解.
(1).x=3(2)x=3
3.解一元一次方程的基本思路:
4.解决问题的基本步骤
例5:整理一批图书,由一个人做要40小时。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率下共同,具体应先安排多少人工作?
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40
去括号,得4x+8x+16=40
移项及合并,得12x=24
系数化为1,得x=2
答:应先安排2名工人工作4小时.
注意:工作量=人均效率人数时间
本题的关键是要人均效率与人数和时间之间的数量关系.
三、基础训练:课本第113页第题.
四、综合训练:课本113页至114页
五、达标训练:
五、课堂小结:收获了哪些?还有哪些需要再学习?
学生作业
课件出示问题明确知识要点
学生练习基础上,教师点拨
一元一次方程的解法教案 篇13
每一门功课都有它自身的规律,有它自身的特点,数学当然也不例外。下面是有关七年级上册数学第五章知识点的内容,供你学习参考!
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的`符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax=b(a0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba).
六、用方程思想解决实际问题的一般步骤
1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.、设:设未知数(可分直接设法,间接设法)
3、列:根据题意列方程.
4、解:解出所列方程.
5、检:检验所求的解是否符合题意.
6、答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1、和、差、倍、分问题:
(1)倍数关系:通过关键词语是几倍,增加几倍,增加到几倍,增加百分之几,增长率来体现.
(2)多少关系:通过关键词语多、少、和、差、不足、剩余来体现.
2、等积变形问题:
等积变形是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率工作时间
6、行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度时间.
(2)基本类型有
①相遇问题;
②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
有关关系式:
商品利润=商品售价商品进价=商品标价折扣率商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价折扣率
8、储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵利息=本金利率期数
本息和=本金+利息
利息税=利息税率(20%)
一元一次方程的解法教案 篇14
【学习者分析】:
本班学生在一个星期前已经学习了等式的性质、一元一次方程的概念、一元一次方程的解以及一元一次方程的解法,在学习过程中大部分同学能掌握上述知识,但学生不会自主复习知识,因此很容易遗忘,需复习巩固。
【教学目标】:
一、情感态度与价值观
1、在复习一元一次方程的过程中,体会学习方程的意义在于解决实际问题。
2、在查漏补缺的过程中培养学生自我发现、自我归纳、善于分析、勇于探索的能力,循序渐进,激发学生求知欲,增强学生自信心,体会分类的数学思想。
二、过程与方法
1、以点拨——精讲——精练的模式,完善知识的结构。
2、尽力引导学生进行分析、归纳总结。
三、知识与技能
1、会运用等式的性质解一元一次方程,并检验一个数是不是某个一元一次方程的解,在解方程时会对求出的解进行检验,养成良好的学习习惯,并加深对方程解的认识。
2、会一元一次方程的简单应用。
【教学重点、难点】:
重点:一元一次方程的解和解一元一次方程
难点:能够熟练准确地解一元一次方程和它的应用
【教学过程】:
教学活动1:
一、复习知识点:等式的性质、一元一次方程的概念以及一元一次方程的解
(1)基础练习,回顾知识点:
1、巳知a=b,下列四个式子中,不正确的是()
=2bB.-2a=-+2==b-2
2、下列四个方程中,一元一次方程是( )
A、B、C、D、
3、下列方程中,以4为解的方程是()
(2)学生归纳,电脑呈现知识点
教学活动2:
一、复习知识点:一元一次方程的解法
(1)练习回顾一元一次方程的解法步骤
1.下列方程变形正确的是()
A.由.B.由.
C.由.
D.由.
2、解方程:(用实物投影学生的错解)
3、归纳解一元一次方程的.一般步骤是:
①______;②________;③________;④_________;⑤_______
4、解一元一次方程时应注意哪些事项?(提问学生,用电脑显示)
教学活动3:见练习卷
教学活动4:
小结:
1、呈现知识结构:
2、解一元一次方程的一般步骤以及注意事项
变形名称注意事项
去分母防止漏乘(尤其整数项),注意分子要添括号
去括号注意变号,防止漏乘
移项移项要变号
合并同类项计算要仔细,不要出差错
系数化成1计算要仔细,分子分母不要颠倒
一、巩固练习:
题组一:
(1)已知下列式子:(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)(E)
(F)3x+3>1;其中是一元一次方程的有(填序号)
(2)如果关于的方程是一元一次方程,那么。
(3)写一个以为根的一元一次方程是。(4)已知方程的解是,则。
题组二:解下列方程:
(1)(2)
题组三:(方程的简单应用)
(1)若。
(2)若是同类项,则2m-3n=。
(3)代数式x+6与3(x+2)的值互为相反数,则x的值为。
(4)若与互为倒数,则x=。
二、拓展训练:
1、解关于的方程:
2、解绝对值方程:
课外作业:姓名:学号班别
1、下列各式中属于一元一次方程的是()
2、下列方程变形中,正确的是()
3、方程2x-4=x+2的解是()-2
4、研究下面解方程的过程
去分母,得……①
移项,得……②
合并同类项,得……③
将未知数的系数化为1,得……④
对于上面的过程,你认为()
A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③
5、检验下列方程后面大括号内所列各数是否为相应方程的解
(1),{,}
6、若是方程的解,则 .
7、写一个一元一次方程,使它的解为: .
8、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则m=。
9、若和互为相反数,则y=_______。.
10、若与是同类项,则的值是。
11、解方程
(1)(2)(3)
(4)(5)(6)
上一篇:我与地坛教案一等奖【实用7篇】
下一篇:返回列表