《平均数》数学教案【通用4篇】
【导言】此例“《平均数》数学教案【通用4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
平均数教学设计一等奖 平均数教学设计优质课评课【第一篇】
教材第90、第91页的内容及第92页做一做
1、理解平均数的含义,初步学会简单的求平均数的方法
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用
3、感受平均数在生活中的应用,增强探索数学规律的兴趣。
理解平均数的含义,掌握求平均数的方法,“移多补少” “先合并再平分”的实际意义和应用。
初步学会简单的数据分析,进一步体会统计在现实生活中的作用。
多媒体课件教学过程:
一、情境导入
1、谈话引入
师:同学们,喜欢吃桃子吗?老师这有16个桃子,我把它们分给2个同学看,怎样分才能让他们一样多。
2、引入“平均数”师:每人都是8个桃子,8就是一个平均数。这样分两个同学就一样多了。(出示课题:平均数)
同学们在日常生活中还听到或者用到平均数?(平均身高,平均成绩,平均速度,平均产量等等。
二、自主探究,解决问题
1、初步理解平均数的意义和求平均数的方法。
(课件出示教材第90页例1情境图)
师:同学们请看这张图片,这是环保小分队的同学们收集饮料瓶的统计情况,在这张统计图你获得了哪些数学信息?我们要解决的问题是什么?
师:你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?学生汇报交流
师:这个小组平均每人收集了多少个饮料瓶?(13个)
师:大家都同意这个算法吗?13是怎么来的?
“移多补少”的方法。
指名学生说自己用的方法,结合学生的口述和学生动手操作,用课件演示“移多补少”的过程。
师:这种方法对吗?为什么要把小红的一个给小兰,把小明的两个给小亮?(为了使他们每个人的瓶子数量同样多)能给这种方法起个名字吗?(指名学生试着回答总结)
师:像这样把多的饮料瓶移出来补给少的,使得每个人的饮料瓶的数量同样多,这种方法叫“移多补少”,(板书移多补法)这里平均每人收集了13个,这个“ 13”是他们真实收集到的饮料瓶吗?(不是)而是4个人的总体水平。
师:还有不一样的方法吗?学生口述算理并说算式,老师板书。
师:像这样先合并然后再平均分的方法同叫“先合后分法。”无论是通过移多补少还是先合后分,其目的只有一个,就是使原来几个不同的数变得同样多,这样得到的数就是这组数据的平均数。13就是这4个数的平均数,这也是我们今天要学习的内容。
(板书课题:平均数)它引导学生利用“移多补少”或“平均分的意义”理解,平均数并不是每个学生收集到瓶子的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到数,可能同学们收集到的比这个数量小,也可能比这个数量大。平均数是为了代表这组数据的总体水平而创造出来的一个“虚拟”的数。
2、内化拓展、进一步理解平均数的意义和计算方法。
师:现在让我们一起来看看体育小组的活动(课件出示照片和91页例2情景图——————踢毽比赛)对于比赛,你们最想知道什么?(哪个队赢)那就是想知道哪个队的成绩好?现在老师让你们当裁判,一定要公平公正地裁决。
(1)出示表一:(男女生各一名同学)师:如果你是裁判,你认为哪个队赢?你是怎么知道的?(19>17)
(2)出示表二:(男女生各加入三名同学)师:现在哪个队赢了?你怎么知道?(指名学生说是通过计算总成绩知道的)现在男生算你们队的成绩,女生算你们队的成绩。
通过计算得出:68<76(女生队获胜)引导学生体会,在人数相同的情况下,可以用求总数的方法比较输赢。也可以求平均数的方法。
男生:68÷4=17(个)
女生:76÷4=19(个)17<19(3)出示表三:(男生加入一名同学)
师:看来女生队暂时领先,男生队还有一名队员要加入进来,请各位裁判独立思考后给出最终的裁定?并说出你是怎么想的?
预设:比总数男生对获胜,比平均数合理。
师:怎样列式解答呢?(学生口述,老师板书):男生队平均每人踢毽个数,女生队平均每人踢毽个数:(19+15+16+18+17)÷5,(18+20+19+19)÷4 =85÷5 =76÷4 =17(个)=19(个)17<19。答:女生队的成绩好些。
三、探究结果,回顾小结
1、体会平均数的意义。
师:回忆一下,我们学了什么?(预设:平均数)用自己的话说一说,平均数是一个什么样的数?(引导学生用自己的话说出求平均数的意义和作用。)
①当个数不同,用总数量比较结果时有失公平,可以用两组数据的平均数来比较。
②平均数能较好的反应出一组数据的总体情况③平均数是一个虚拟的数。
2、回顾求平均数的方法。
①把多的瓶子移出来,补给少的,使得每个人的瓶子数量同样多,这种方法叫移多补少。
②用先合后分计算的方法求平均数时,平均数=总数量÷总份数
四、联系实际,拓展应用
1、做一做(课件出示)学生独立思考解决,并指名学生板演并说方法。
2、判一判(课件出示)指名学生读题,独立思考后判断并说理由。
3、说一说(课件出示)学生小组交流并汇报。
五、实践作业、课后延伸
参照十岁儿童身高正常,测量本班同学的身高,判断一下同学们的身高是否正常。
男生:140cm
女生:141cm)
平均数较好地反映一组数据的总体情况
方法:移少补多(有局限)找基数,分多余数
公式:总数÷份数=平均数
特点:最大值﹥平均数﹥最小值;平均数≠实际数。
平均数【第二篇】
平均数的应用教学内容 第43页例2教学目标1、 使学生掌握平均数的意义和求平均数的方法。2、 懂得平均数在统计学上的意义和作用。3、 培养应用所学知识合理、灵活解决简单的实际问题。教学重点使学生掌握平均数的意义和求平均数的方法。教学难点 培养应用所学知识合理、灵活解决简单的实际问题。教学过程:
一、创设情境引入新课
1、出示两个篮球队的身高统计表,让学生根据统计表说一说谁最高,谁最矮。
2、如果两个篮球队进行身高比较,你认为哪个队队员身高高些?
王强是欢乐队中最高的队员,我们能不能根据这个信息就下结论欢乐队总体身高比开心队高吗?为什么?
3、讨论:怎样比较两支球队的整体身高情况。
二、引导学生探究新知(引导学生探索用平均数的方法比较)
1、合作学习
让学生自己进行平均数计算。
2、提问:142厘米表示什么?它是指欢乐队某个队员的身高吗?
3、144厘米表示什么?它是指开心队某个队员的身高吗?
4、你能告诉我们两个队的总体身高比较情况吗?
虽然欢乐队中的王强是两个队中最高的,但欢乐队的总体身高情况不如开心队,体会平均数是反映一组数据总体情况的一个很好的统计量。说一说我们在生活中哪些地方也需要运用“平均数”知识来解决问题?
师:看到你们这么勤奋好学,又学得那么有水平。老师今天也特别高兴,我相信你们以后会发现和自学到更多的数学知识。其实“平均数“的知识还有很多,在生活实际中应用也很广,你们回忆得起来吗?对我们上课的评分,也可以来比较,哪一周课堂得分高、哪一周课堂得分低?我们也可以进行比较
出示上两周课堂评分。
[板书: 100分 &→←nbsp; 98]
[板书: 99分 99]
[板书: 98分 99]
[板书: 100分 100]
[板书: 96分 98]
[板书: 98分 100]
你们认为第一周课课堂评分肯定比几分多,比几分少?
师生共同演算:
平均分是多少?
三、巩固练习:课本练习十一
全课小结。
第五课时 综合练习
练习内容第44页至第45页的练习。
练习目标应用所学知识合理、灵活解决简单的实际问题。教学过程一、复习本单元我们学过了哪些知识?知道了什么?学会了什么?二、指导练习第一题,是一道实践活动题,要让学生在进行实际调查的基础上,再估算平均身高和平均体重。每个小组计算完了以后,再在小组间对比一下,并和第39页中国10岁儿童身高、体重的正常进行比较,看看能发现什么信息。
第二题,先让学生根据图中的温度记录理解什么是最高温度,什么是最低温度,再把统计表补充完整,最后计算出一周平均最高温度和一周最低温度。
学生了解最高温度、最低温度、一周平均最高温度、平均最低温度等概念后,再让学生实际记录本地一周的气温情况,再计算出一周平均最高温度和平均最低温度。学生记录气温的方式可以通过广播、电视、报纸、网络等媒体获得信息。
第三题,也是一道实践活动题,通过收集、整理数据、计算平均等过程,进一步培养学生的统计能力。
第四题,让学生根据甲乙两种饼干第一季度的销量统计图,先比较他们第一季度月平均销量的多少,然后分析一下乙种饼干销量越来越大的原因,让学生初步体会统计在实际生活中的作用,挖掘数据背后隐藏的现实原因。第三小题是开放题,让学生根据统计图进一步发现信息,如学生会发现两种饼干二月份的销量是相同的,但甲种饼干的销量逐月下降,乙种饼干的销量逐月上升,也可以预测一下两种下个季度的销售情况。
第五题,让学生明确,王叔叔走的路程分为4段,一共骑了3天,而所求的是平均每天骑的路程,所以除数应是3而不是4。
三年级数学《平均数》教案【第三篇】
教学目标
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、情景导入
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
《平均数》 教案【第四篇】
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的。难点。
4、教学目标
在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足米的儿童免费乘车。米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
上一篇:高一生物必修一教案【精彩5篇】