交换律数学教案精选4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“交换律数学教案精选4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

交换律教学反思【第一篇】

课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:

一、学习问题的产生激发了学生的探究的欲望。

课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。

二、情境的创设发散了学生的数学思维。

教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

三、学法的指导体现了知识建模的过程。

数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

四、以学生为主体创造性地使用教材。

本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。

交换律数学教案【第二篇】

一、教学内容

人教版义务教育教科书数学四年级下册第三单元第一节内容。

二、课程标准

《数学课程标准(20xx版)》学段目标:掌握必要的运算技能;在观察、实验、猜想、验证等活动中,发展合情推理能力。《义务教育数学课程标准(20xx年版)》在“课程内容”的第二学段中提出:“探索并了解运算律,会应用运算律进行一些简便运算”“经历与他人交流各自算法的过程,并能表达自己的想法”。

三、教学目标

1、理解加法交换律和乘法交换律的含义,能用字母式子表示加法交换律和乘法交换律。

2、经历交换律的探索过程,体会观察发现、猜测验证、归纳概括的数学学习方法,发展合情推理能力。

3、在自主探究、合作交流的过程中,体会数学研究的乐趣。

四、教学重难点:

通过观察、猜测、验证、归纳概括出加法和乘法交换律,发展合情推理能力。

五、教学过程

(一)谈话引入

1、以本班那女生人数为例复习加法意义。

2、口算比赛,质疑引思:在刚才的计算中,你有什么发现?

(二)新知探究

1、提出猜想。

只要是两个数相加,交换它们的位置,和都不变吗?也许有不同的意见,引导学生展开验证活动。

2、举例验证。

(1)引导学生口头举例,计算两个算式,看他们的结果是否相等。

(2)分头举例。给学生一、两分钟时间,举出像这样的例子,并汇报。引导学生明确只有足够多,比较全面的例子才能证明结论的正确性。

(3)得出结论:两个数相加,交换加数位置,和不变。

3、再次提出猜想:得到加法交换律这个结论后,你有没有产生什么联想?学生质疑,两数相减、相乘、相除,交换它们的位置,结果会是怎样的呢?

4、验证结论。

(1)举例验证。学生独立完成,有困难或疑问可以和同学商量,或者向老师提问。

(2)汇报成果。第几个猜想是成立的?说出理由。

(3)就学生中可能出现的不计算,直接用等号连接两个算式的做法,强调研究的真实性。

5、结合加法和乘法的意义理解交换律。

你有什么办法说明交换两个加数的位置,和确实是不变的呢?

结合线段图和生活实例来说明结论的正确性。

6、唤起原有经验,完善认知结构。

我们以前在哪里见过加法和乘法的交换律?回顾小学数学学习经历中关于加法交换律和乘法交换律的内容,建立起新旧知的联系。

(三)巩固练习

1、16+35=35+()

308+52=()+308

5678×287=()×5678

(现在为什么可以直接填写?)

25○16=16○25○可以填什么?

2、用字母表示运算定律。

()+()=()+(),()×()=()×()

你想填什么数?写得完吗?有没有一种办法把所有情况都表示出来呢?

(四)全课总结谈收获

通过学习,你有什么收获?

交换律数学教案【第三篇】

一、创设情境

1、引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢! (多媒体演示:李叔叔骑车旅行的场景。)

2、获得信息。

问:从中你可以得到哪些信息? (学生同桌交流,然后全班汇报。) 问题是什么?

3、解决问题。

问:能列式计算解决这个问题吗? (学生自己列式并口答。)

二、探索规律

1、加法交换律。

(1)解决例1的问题。 根据学生回答板书:

40+56=96(千米) 56+40=96(千米)

问:两个算式都表示什么?得数怎样?○里填什么符号? 40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。 两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______ 78+64=______

⑥完成课本第18页下面的“做一做”1

三、巩固提高

1、运用加法交换律填上合适的数

830+420=( )+( ) ( )+200=( )+37

27+29=29+( ) A+( )=20 +( )

2、完成P19“练习五”第2题。

3、完成P19“练习五”第3题。

四、课堂小结:你有什么收获?

板书设计 加法交换律

加法交换律:两个加数交换位置,和不变。

加法交换律用字母表示为:A+b=b+A

交换律数学教案【第四篇】

教学目标:

1、在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。

教学重点:理解并掌握加法交换律、结合律。

教学难点:归纳、概括出加法交换律和结合律。

教学准备:课件

教学过程:

一、谈话引入

1、师生谈话。

同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?

学生自由发言。

2、课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)

追问:你能根据这些信息,提出哪些用加法计算的问题?

(1)跳绳的有多少人?

(2)参加活动的女生有多少人?

(3)参加活动的一共有多少人?

3、导入新课。

在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中

的运算规律。(板书课题)

二、交流共享

1、加法交换律。

(1)提出问题:求跳绳的有多少人,应该怎样列式计算?

(2)列式解答。

指名学生回答,教师板书:28+17=45(人)

追问:还可以怎样列式?

教师板书:17+28=45(人)

(3)观察发现。

提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。

引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。

引导:我们可以用什么符号将这两道算式连起来呢?(等号)

师板书:28+17=17+28

(4)照样子写一写。

让学生试写等式,并投影展示。

提问:观察这些等式,你有什么发现?

(两个加数交换位置,和不变)

(5)指导学生用自己喜欢的方法表示出这种规律。

学生在各自的练习本上表示规律后,交流各自的表示方法。

(6)用字母表示加法交换律。

明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:

a+b=b+a

教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)

2、加法结合律。

(1)课件出示问题:跳绳和踢毽子的一共有多少人?

(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。

(3)组织汇报交流。

解法一:先算出跳绳的有多少人。

(28+17)+23

=45+23

=68(人)

解法二:先算出女生有多少人。

28+(17+23)

=28+40

=68(人)

提问:这两道算式有什么相同的地方和不同的地方?

学生观察、比较这两个不同算式的计算结果。

追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?

根据学生的回答,师板书:(28+17)+23=28+(17+23)

(4)加深认识、探索规律。

①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。

(45+25)+16○45+(25+16)

(39+18)+22○39+(18+22)

②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?

学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,

和不变。

追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?

师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)

三、反馈完善

1、完成教材第56页“练一练”。

让学生说说每个等式各运用了什么运算律及判断的依据。

第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。

2、完成教材第58页“练习九”第1、2、3题。

(1)第1题中的最后一小题运用了加法交换律和加法结合律。

(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。

(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。

让学生计算,并说说每组中两题的联系。

比较每组中的两题,说说哪一题计算起来更加简便。

四、反思总结

通过本课的学习,你有什么收获?还有哪些疑问?

20 264940
");