平行四边形教案(精编5篇)

网友 分享 时间:

【前言导读】这篇优秀教案“平行四边形教案(精编5篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

平行四边形教案1

教学内容:

义务教育六年制小学《数学》第九册P64-P66

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:

掌握平行四边形面积公式。

教学难点:

平行四边形面积公式的推导过程。

教具、学具准备:

1、多媒体计算机及课件;

2、投影仪;

3、硬纸板做成的可拉动的长方形框架;

4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程:

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

二、质疑引新:

1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

三、引导探求:

(一)、复习铺垫:

1、什么图形是平行四边形呢?

2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

(二)、推导公式:

1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

4、学生实验操作,教师巡视指导。

5、学生交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、微机演示各种转化方法。

6、归纳总结规律:

沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?得出:

因为:平行四边形的面积=长方形的面积=长×宽=底×高

所以:平行四边形的面积=底×高

(板书平行四边形面积推导过程)

7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=或S=ah(板书)。

8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

四、巩固练习:

1、刚才我们已经推导出了平行四边形的。面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

2、练习:

⑴、(微机显示例一)求平行四边形的面积

⑵、判断题(微机显示,强调高是底边上的高)

⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

五、问答总结:

1、通过这节课的学习,你学到了哪些知识?

2、平行四边形面积的计算公式是什么?

3、平行四边形面积公式是如何推导得出的?

六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形教案2

教学目标

知识技能目标

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四 边形的这两种判定方法,并学会简单运用.

过程与方法目标

1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感态度价值观目标

通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学重点:

平行四边形判定方法的探究、运用.

教学难点:

对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

教学过程

第一环节 复习引入:

( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

问题1(多媒体展 示问题)

1.平行四边形的。定义是什么?它有什么作用?

2.平 行四边形还有哪些性质?

问题2

有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

第二环节 探索活动(12分钟,学生动手探究,小组合作)

活动1:

工具:两根长度相等的笔,

两条平行线(可利用横格线).

动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

思考:你能说明你所摆出的四边形是平行四边形吗?

思考:以上活动事实,能用字语言表达吗?

目的:

得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形。

活动2

工具:两根不同长度的细纸条。

动手:能否用这两根细纸条在平面上

摆出平行四边形?

思考:你能说明你们摆出的四边形是平行四边形吗?

思考:以上活动事实,能用字语言表达吗?

目的:

得出平行四边形的性质:对角线互相平分的四边形是平行四边形

第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

随堂练习:

1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

(1)OA与OC,OB与OD相等吗?

(2)四边形BFDE是平行四边形吗?

(3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

(让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

学生想到的画法有:

(1)分别过A,C作BC,BA的平行线,两平行线相交于D;

(2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

第四环节 小结:(4分钟,学生回答问题)

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

第五环节 布置 作业:

B、C组(中等生和后三分之一生)本104页习题第1题、第2题

A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

八年级数学教案:《平行四边形》3

教学目标

理解平行四边形的定义,能根据定义探究平行四边形的性质。

教学思考

1、通过观察。实验。猜想。验证。推理。交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力。

2、能够根据平行四边形的性质进行简单的推理和计算。

解决问题

通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识。

情感态度

在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验。

重点

平行四边形的性质的探究和平行四边形的性质的应用。

难点

平行四边形的性质的应用。

教学流程安排

活动流程图

活动内容和目的

活动1欣赏图片,了解生活中的特殊四边形

活动2剪三角形纸片,拼凸四边形

活动3理解平行四边形的概念

活动4探究平行四边形边。角的性质

活动5平行四边形性质的应用

活动6评价反思。布置作业

熟悉生活中特殊的四边形,导出课题。

通过用三角形拼四边形的过程,渗透转化思想,激发探索精神。

掌握平行四边形的定义及表示方法。

探究平行四边形的性质。

运用平行四边形的性质。

学生交流,内化知识,课后巩固知识。

教学过程设计

问题与情景

师生行为

设计意图

[活动1]

下面的图片中,有你熟悉的哪些图形?

(出示图片)

演示图片,学生欣赏。

教师介绍四边形与我们生活密切联系,学生可再补充列举。

从实例图片中,抽象出的特殊四边形,培养学生的抽象思维。通过举例,让学生感受到数学与我们的生活紧密联系。

问题与情景

师生行为

设计意图

[活动2]

拼一拼

将一张纸对折,剪下两张叠放的三角形纸片。将这两个三角形相等的一组边重合,你会得到怎样的图形。

(1)你拼出了怎样的凸四边形?与同伴交流。

(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由。

学生经过实验操作,开展独立思考与合作学习。

教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究。

教师待学生充分探究后,请学生展示拼图的方法和不同的图形。并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容

《平行四边形的性质》教案4

一教学背景分析

(一)教材的地位和作用

1、平行四边形的性质是学习和掌握了《图形的平移与旋转》、《中心对称和中心对称图形》的基础上编排的。平行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识。而用中心对称作为工具,借助图形的旋转变化来研究平行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础。且为下节学习平行四边形的识别提供了良好的认知基础。

2、教学内容的选择和处理

本节课所选教学内容是教材中四条性质及例题。

为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力。我采取把平行四边形所有性质集中在一课时中一起研究。

(二)学情分析

学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础。八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺。而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲。

二教学目标

1、知识与技能

使学生掌握平行四边形的四条性质,并能运用这些性质进行简单计算。

2、过程与方法

让学生体会通过操作,观察,猜想,验证获得数学知识的方法。注意发展学生的分析,归纳能力,提升数学思维品质。

3、情感态度与价值观

注意学生独立探究及合作交流的结合,促进自主学习和合作精神。

三重点,难点

1、重点:理解并掌握平行四边形的性质。

2、难点:通过探究得到平行四边形的性质。

四教学方法和教学手段

1、教学方法

采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学。

2、教学手段

教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验平行四边形是中心对称图形,并得出平行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略。

五教学过程

(一)温故知新,导入新课

以录像和照片形式展现平行四边形在生活中的应用,伸缩晾衣架,活动铁门等,引导学生回忆起平行四边形相关知识,明确平行四边形的定义,对边,对角,对角线的概念。

教师提出问题:平行四边形具有什么性质呢并板书课题。(教师直接提出问题,提供给学生较大的探究空间,为发现法学习创建情景。)

(二)自主探究,发现性质

组织学生以小组为单位,充分利用手中的工具,通过观察,测量等方法进行大胆猜测,尽可能多的寻找,发现平行四边形的有关性质。

几分钟后,揭示研究结果:

平行四边形对边相等;平行四边形对角相等;平行四边形邻角互补等。

对于学生的结论,不论正确与否,鼓励学生对猜想进行探讨,加以证明,并对错误结论进行调整,得出

性质一:平行四边形对边相等。

性质二:平行四边形对角相等。

此时,教师提问;除了测量方法,还可以用怎样的图形变换?学生在尝试翻折,旋转后,发现图形旋转180度以后重合,于是又有新发现:

性质三:平行四边形对角线互相平分。

性质四:平行四边形是中心对称图形,两条对角线交点是对称中心。

(让学生自己独立或以小组形式合作学习探究平行四边形性质后,使学生在亲身体验中获得知识,使学生对知识的发生发展过程有了一个清晰的了解。)

(三)归纳交流,形成概念

以小组为单位,请学生交流平行四边形性质,并用规范语言描述。

请学生总结整个探究的过程:提出问题——试验操作——猜想——验证——归纳总结。若验证后发现不合理,则重新探索,不断往复,形成新知。

(四)性质应用,形成技能

问题一:平行四边形ABCD中,∠A比∠B大40度,AB=8,周长等于24。

从这些信息中你能得到哪些结论

(通过此题,提供了开放的情景,可让学生充分运用已有的性质1,2,加强了对新知识的应用意识。)

问题:将问题一中"周长等于24"改为"对角线AC,BD交于O,△AOB的周长为24",求AC与BD的和是多少

(此题为课本例题的变形,进一步加强了对平行四边形性质的运用。)

(五)归纳小结,巩固提高

让学生谈谈本节课的收获及在知识获得过程中的体验和感受。

教学评价

1本节课贯彻了以教师为主导,以学生为主体的原则。以学生动手操作,独立思考,合作交流贯穿始终。

2从问题的提出,引导学生观察,动手操作,猜想,验证,归纳,整个过程让学生充分感受到知识的产生和发展过程,促使学生积极思维,主动探索,勇于发现。

3平行四边形性质的表述不是由教师直接给出,而是在教师指导下由学生归纳,交流,最后达成共识,形成规范的语言描述四条性质,有助于提高学生的。概括表达能力。

4根据学生的个体差异,遵循因材施教的原则,设计分层作业,分必做题和选做题,使不同层次的学生都能通过作业有所收获。

平行四边形5

七、教学步骤

复习提问

图1

1.什么叫平行四边形?我们已经学习了它的哪些性质?

2.已知:如图1, ,.

求证:.

3.什么叫做两条平行线间的距离?它有什么性质?

引入新课

在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。

讲解新课

图2

(1)平行四边形的性质定理3,平行四边形的对角线互相平分。先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。

(2)平行四边形性质,定理的综合应用:

同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。

图3

例2  已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.

求证:.

证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。如这里可直接由定理3得出 ,而不再重复定理的推导过程证出。

图4

例3  已知,如图4,,,.求的面积。

(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .

(2)讲清楚何为平行四边形的高。在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高。如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线。作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度。

(3)平行四边形面积的表示法,如图5表示为 .

(4)学生自己完成解答。

图5

总结、扩展

1.小结

(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化。

(2)引导学生填写下列表格(打出投影)

名称

平行四边形

示意图

定义

对角线

2.思考题:教材P144中  

八、布置作业

教材P141中2(4);P142中3(2)、4、5、6.

九、板书设计

标题 例2

小结(表格)

平行四边形性质3 例3

十、背景知识与课外阅读

国际数学奥林匹克

简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛。1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首。

十、随堂练习

教材中1、2

补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.

2.在中, , , ,则 .

3.已知 是 的 边上任一点,则 : 的值为____.

A. B. C. D.不确定

20 1239316
");