人教版六年级圆柱与圆锥教案【最新8篇】

网友 分享 时间:

【阅览】优质的范文能让您的写作方便快捷,远离加班,以下这篇“人教版六年级圆柱与圆锥教案【最新8篇】”是由阿拉题库网友整理分享的,供您参考之用,希望对您有些帮助,喜欢就复制下载吧。

六年级圆柱圆锥教案6【第一篇】

1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。

2、通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。

3、从实际生活入手,通过解决实际问题,发展学生的空间观念。

六年级下册数学《圆柱和圆锥》的教学设计【第二篇】

教材第18,19页的例1,完成第19页的练一练和练习五的第14题。

1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

2、认识圆柱和圆锥的底面、侧面和高,并会测量高。

1、让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

2、认识圆柱和圆锥的高,并会测量高。

认识圆锥的高。

教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

1、师出示准备的模型圆柱,圆锥,提问,这是什么形体?

师指出:圆柱体简称圆柱,圆锥体简称圆锥。

2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)。

4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)。

(1)谈话,请看挂图,刚我们看到的圆柱有大的,有小的,有高的,有矮的,还有这么扁的,同学们桌面上也有大小不一的圆柱,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点?(学生独立思考后同桌交流后自由发表意见,师根据学生回答适当板书)。

(2)验证发现:上下面是两个完全相同的圆。

刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

学生可能:a把茶叶筒的盖头拿下来比划b用线绕c用尺亮圆的直径。

(3)师指出:这是沿着圆柱形物体的轮廓画下来的圆柱的平面图。

圆柱上下两个面叫做圆柱的底面(板书底面,图中标出底面)。

围成圆柱的曲面叫做圆柱的侧面。

圆柱两个底面之间的距离叫做圆柱的高(板书,在图中标出)。

提问:圆柱的高有多少条?它们之间有什么关系?(师出示装满牙签的牙签盒让学生体会)。

验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

(1)谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)。

有一个顶点,底面是一个圆形,侧面是一个曲面。

(2)看书对照你的发现是否正确。

(3)师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)。

提问,圆锥的高有几条?

滚动圆锥,你有什么发现?

辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图。

(4)指出你手中圆锥各部分名称。

1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

2、练习五第二题,连一连。

3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

圆柱的底面半径与高与长方形小旗有什么关系?

4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上。

圆柱的表面积(人教版六年级教案设计)【第三篇】

2.掌握圆柱侧面积和表面积的计算方法.。

3.会正确计算圆柱的侧面积和表面积.。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算.。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题.。

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算).。

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.。

二、探究新知。

(一)圆柱的侧面积.。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.。

(二)教学例1.。

1.出示例1。

例1.一个圆柱,底面的直径是米,高是米,求它的侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:××。

=×。

≈(平方米)。

答:它的侧面积约是平方米.。

3.反馈练习:一个圆柱,底面周长是厘米,高是25厘米,求它的侧面积.。

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.。

2.比较圆柱体的表面积和侧面积的区别.。

(四)教学例2.。

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2××5×15=471(平方厘米)。

底面积:×=(平方厘米)。

表面积:471+×2=628(平方厘米)。

答:它的表面积是628平方厘米.。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.。

(五)教学例3.。

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

3.学生解答,教师板书.。

水桶的侧面积:×20×24=(平方厘米)。

水桶的底面积:×。

=×。

=×100。

=314(平方厘米)。

需要铁皮:+314=≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.。

5.“四舍五入”法与“进一法”有什么不同.。

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.。

三、课堂小结。

六年级数学《圆柱和圆锥的认识》教案【第四篇】

(1)圆锥的高是。圆锥有()条高。

(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。

(3)下图圆锥的高是()cm。

(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。

二、填一填。

1.指出圆锥的“底面”和“高”。

2.圆锥的底面形状是(),侧面是()面。

3.从圆锥的顶点到底面圆心的距离是圆锥的()。

圆柱的体积(人教版六年级教案设计)【第五篇】

2.认识常用的体积单位:立方米、立方分米、立方厘米.。

3.能正确区分长度单位、面积单位和体积单位的不同.。

教学重点。

使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念.。

教学难点。

教学步骤。

一、铺垫孕伏.。

1.1米、1分米、1厘米,这是什么计量单位?

2.1平方米、1平方分米、1平方厘米,这是什么计量单位?

二、探究新知.。

我们学习了长度和长度单位,面积和面积单位.今天我们要学习一个新概念:体积和体积单位.(板书课题:体积和体积单位)。

(一)实验观察,建立体积概念.。

1.教师演示实验:

第一步:出示有杯水的玻璃杯,在水面处做一个红色记号.。

第二步:在水杯中放入一块石头,在水面处做一个黄色记号.。

第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.。

观察思考:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这。

个现象,说明什么?

汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.。

石块大占据空间大,水面上升得高;

石块小占据空间小,水面上升得低.。

2.学生分组实验.。

实验方法:

第一步:拿出装满细沙的杯子,把细沙倒在一边.。

第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.。

第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.。

观察思考:出现了什么结果?这说明了什么?

汇报归纳:放入大木块,外边剩的沙多;放人小木块外边剩的沙少.。

这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.。

3.总结两次实验结果.。

教师提问:以上的两个实验说明了什么?

学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.。

教师明确:把物体所占空间的大小叫做物体的体积.(板书)。

4.比较物体体积的大小.。

实物比较:字典和大词典桌子和椅子水桶和茶叶桶课本和练习本。

(教师出示一组体积接近的物体)提问:这两个物体谁的体积大?

(二)认识体积单位.。

教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们。

精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立。

方厘米、立方分米、立方米(板书)。

1.认识1立方厘米(出示一块1立方厘米的体积模型)。

这就是体积为1立方厘米的正方体.。

分组观察,然后汇报:你知道了什么?

看一看:1立方厘米的体积比较小,是正方体.。

量一量:1立方厘米的正方体的棱长是1厘米.。

说一说:棱长1厘米的正方体体积是1立方厘米(板书)。

想一想:体积是1立方厘米的物体比较小.。

议一议:哪些物体计量体积时使用立方厘米比较恰当?

2.认识1立方分米.(出示一块1立方分米的体积模型)。

这就是体积为1立方分米的正方体.。

分组观察,然后汇报:你知道了什么?

看一看:1立方分米的体积大一些,是一个正方体.。

量一量:1立方分米的正方体的棱长是1分米.。

说一说:棱长1分米的正方体,体积是1立方分米.(板书)。

想一想:体积是1立方分米的物体比1立方厘米的物体大.。

议一议:哪些物体计量体积时使用立方分米比较恰当?

3.认识1立方米.。

思考:什么样的物体的体积是1立方米?

(板书:棱长1米的正方体,体积是1立方米)。

文档为doc格式。

圆柱的表面积(人教版六年级教案设计)【第六篇】

肖老师的这堂课总的来说准备充分,如教师的教具,学生的学具,以及各种不同类型的练习;教师语言精练,教态自然大方,难点突破,重点突出,练习有坡度。

具体如下:

一、优点。

1、合理的利用教材。

圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。

2、教师的主导与学生主体的统一。

本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的'意义。在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。

二、不足。

圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。

第二单元:《圆柱与圆锥》单元备课 教案教学设计(人教新课标六年级下册)【第七篇】

(一)比例的意义和基本性质。

1.比例的意义。

2.比例的基本性质。

3.解比例。

(二)正比例和反比例的意义。

1、正比例的意义。

2、正比例图像。

3、反比例的意义。

(三)比例的应用。

1.比例尺。

2.图形的放大与缩小。

3.用比例解决问题。

二、教材分析。

1.体现比例在生产和生活中的广泛应用。

首先知识由实际问题引入,例如由大小不同的国旗引入比例的意义,从“世界公园”的埃菲尔铁塔模型引入解比例,从生活中的放大、缩小现象引入图形的放大和缩小。其次练习中安排了较多的根据比例意义解比例的实际问题。第三安排了“比例的应用”一节内容,其中既有正、反比例的实际问题,还有比例尺和图形的放大与缩小。通过这些内容的学习,使学生体会比例在生产生活中的应用,提高学生应用所学知识解决实际问题的能力。

2.渗透函数思想。

函数是数学的重要概念之一。在小学,主要是通过一些知识的学习,渗透函数思想。本单元中正比例和反比例的意义是渗透函数思想的重要内容。因为成正比例和反比例的量实际上反映的是两个变量之间的依存关系。教材通过实例,用列表的形式,体会变量之间的关系,并用、的式子表示两个变量之间的关系。在认识正比例关系时,教材通过图像表示两个变量的关系,加深学生对正比例关系的认识。

三、教学目标。

1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

四、教学重难点。

重点:理解比例的意义和基本性质。会用比例知识解答比较容易的应用题。

五、突破措施。

1.重视基本概念的教学。

比例、正比例、反比例是本单元学习的几个基本概念,十分重要。学习比例的相关知识以及比例的应用都有赖于对这些概念的理解和掌握。如解答含正反比例关系的实际问题,首先要对两个量成何比例做出判断,然后依据正比例或反比例数量关系的特点解答教学中要通过观察、比较、判断、归纳等方法帮助学生建立明晰的概念,把握概念的内涵。同时通过应用,不断加深对这些概念的理解和掌握。

2.提高学生综合运用知识的能力。

本单元的知识综合性比较强。所以学习中既要注意新旧知识的联系,又要注意发展学生综合运用知识的能力。教材的编写也注意体现知识的综合应用,例如比例尺的一些练习,不仅限于计算图上距离和实际距离,而且涉及到测量、图形、方向与位置的知识以及根据实际设计比例尺。

六、课时分配。

比例(11课时)。

六年级圆柱圆锥教案6【第八篇】

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)。

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)。

二、实际应用。

1、练习二第7题。

(1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)。

(2)指名板演,其他学生独立完成于课堂练习本上。

(3)集中分析评讲。

2、练习二第8题。

学生独立完成这道题,集体订正。

3、练习二第9题。

指名板演,其他学生独立完成于课堂练习本上。

4、练习二第10题。

(1)学生读题理解题意。

(2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?

(3)学生自主完成。

(4)集体评讲,注重后进生辅导。

5、练习二第11题。

(1)学生读题。

(2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。

(3)学生独立完成。

6、练习二第12题。

(1)学生读题。

(2)引导思考。

(3)集体练习。

7、练习二思考题(学有余力学生完成。)。

引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?接下来学生练习。

三、课堂小结。

通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?

四、课堂作业。

基础训练。

20 2918617
");