圆柱和圆锥的知识点总结【精选4篇】
【导言】此例“圆柱和圆锥的知识点总结【精选4篇】”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
圆锥圆柱练习题【第一篇】
圆柱和圆锥数学教案
单元教学要求:
1. 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高,数学教案-圆柱和圆锥。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程:
一、复习旧知
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1.认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面,小学数学教案《数学教案-圆柱和圆锥》。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的'一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……
4.教学侧面积计算。
(1)认识侧面的形状。
教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?
(2)侧面积计算方法。
①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。
②得出计算方法。
提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)
(3)教学例1
出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。
三、巩固练习
1.提问:这节课学习了什么内容?
2.做圆柱体。
让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。
3.做“练一练”第3题。
指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。
4.思考:
如果圆柱的底面周长和高相等,侧面展开是什么形状,
四、布置作业
课堂作业:练习一第2题。
家庭作业:练习一第3题。
数学教案-圆柱和圆锥
圆柱与圆锥知识点总结【第二篇】
圆柱与圆锥知识点总结
一。圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:
a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
b. 不沿着高展开,展开图形是平行四边形或不规则图形。
C.无论如何展开都得不到梯形。
侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h
4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2
(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)
圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高
圆柱体积=底面积×高
V柱=S h =πr2 h
h =V柱÷S=V柱÷(πr2)
S=V柱÷h
5、.圆柱的切割:
a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2
b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
考试常见题型:
a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
常见的圆柱解决问题:
①、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);
②、压路机压过路面长度(求底面周长);
②、水桶铁皮(求侧面积和一个底面积);
④鱼缸、厨师帽(求侧面积和一个底面积);
V钢管=(πR2﹣πr2)×h
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的。一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
2、圆锥各部分的名称:
圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。
从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
3、圆锥的体积:
圆锥的体积等于与它等底等高的圆柱体积的三分之一
V锥= ×底面积×高= S h= πr2 h
圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S = 3 V锥÷(πr2)
圆锥的底面积=圆锥体积×3÷高 S= 3 V锥÷h
4.圆锥的切割:
a.横切:切面是圆
b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh
考试常见题型:
a 已知圆锥的底面积和高,求体积
b已知圆锥的底面周长和高,求圆锥的体积,底面积
c已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。
三、圆柱和圆锥的关系
1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。
2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。
圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
圆柱体积比等底等高圆锥体积多2倍。
圆锥体积比等底等高圆柱体积少。
(1)等底等高:V锥:V柱=1:3
(2)等底等体积:h锥:h柱=3:1
(3)等高等体积:S锥:S柱=3:1
题型总结:
高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。
半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍
削成最大体积的问题:
正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长
长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽﹥高)圆柱圆锥高等于长方体高
浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。
等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。
六年级数学圆柱和圆锥知识点【第三篇】
教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
教学重点:
圆柱、圆锥表面积、体积的计算
教学难点:
圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片。指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面。两个底面之间的距离叫做高。有无数条高。)
2、圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
1、出示画有圆柱的表面展开图的投影片。先让学生观察,然后让学生回答
圆柱的侧面是指哪一部分?它是什么形状的?
(长方形或正方形)
圆柱的侧面积怎样计算?
(底面的周长高)
为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)
2、表面积是由哪几部分组成的?
(圆柱的侧面积+两个底面的面积)
3、第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)
2、圆锥的体积怎样计算?
(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
圆柱圆锥练习题【第四篇】
1、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。
2、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了平方分米,那么这根木头原来的体积是多少?
3、用一块长厘米、宽厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?
4、将一块长方形铁皮,阴影的部分,刚好制成一个油桶,求这个油桶的体积。
5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。
6、一个底面积是10平方厘米的圆柱,侧面展开后是一个正方形,求这个圆柱的侧面积。
7、在一个正方体纸盒中恰好能放入一个体积为立方厘米的圆柱体卷纸,求这个正方体的容积。
8、求圆锥的侧面积和体积。(单位:cm)
9、小明新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?
10、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?
11、在一只底面半径为20cm,高为40cm的圆柱形玻璃瓶中,水深16厘米,要在瓶中放入长和宽都是16cm.,高30cm的一块长方体铁块。使其一面紧贴玻璃瓶底面。如果把铁块横着放入玻璃瓶完全浸没水中,瓶中的水会升高多少cm?如果把铁块竖着放入玻璃瓶,瓶中的水将会升高多少cm?
12、一个直角三角形的三边长度为3厘米,4厘米,5厘米,分别以这三条边为轴旋转一周形成的立体图形。它们的体积各是多少?
13、把一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多20平方厘米,若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?
14、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往两个容器中加入同样多的水,直到两容器中的水深相等,求这时容器中水的高度是多少厘米?
15、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?
上一篇:2024年终(述职报告)精编5篇
下一篇:2024个人(述职报告)精编5篇