相反数教案【优推4篇】

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“相反数教案【优推4篇】”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

相反数教案【第一篇】

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

相反数【第二篇】

教学目标

1.使学生理解相反数的意义;

2.使学生掌握求一个已知数的相反数;

3.培养学生的观察、归纳与概括的能力.

教学重点和难点

重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.

难点:多重符号的化简.

课堂教学过程设计

一、从学生原有的认知结构提出问题

二、师生共同研究相反数的定义

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.

3.0的相反数是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是相反数等于它本身的唯一的数.

三、运用举例  变式练习

例1  (1)分别写出9与-7的相反数;

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的相反数如何表示?

引导学生观察例1,自己得出结论:

数a的相反数是-a,即在一个数前面加上一个负号即是它的相反数.

1.当a=7时,-a=-7,7的相反数是-7;

2.当-5时,-a=-(-5),读作“-5的相反数”,-5的相反数是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的相反数是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的相反数;-(+4)表示+4的相反数;

例2  简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习

1.填空:

(1)+的相反数是______; (2)-3的相反数是______;

(5)-(+4)是______的相反数;  (6)-(-7)是______的相反数.

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为相反数?

-(-8)与+(-8);-(+8)与+(-8).

四、小结

指导学生阅读教材,并总结本节课学习的主要内容:一是理解相反数的定义――代数定义与几何定义;二是求a的相反数;三是简化多重符号的问题.

五、作业

1.分别写出下列各数的相反数:

2.在数轴上标出2,-,0各数与它们的相反数.

3.填空:

(1)-是______的相反数,______的相反数是-.

4.化简下列各数:

5.填空:

(1)如果a=-13,那么-a=______;(2)如果a=-,那么-a=______;

(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

课堂教学设计说明

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“<”号排列出来.

分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的相反数,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.

解:在数轴上画出表示-a、-b的点:

由图看出:-a<-1<b<-b<1<a.

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

相反数【第三篇】

一、素质教育目标

(一)知识教学点

1.了解:互为相反数的几何意义.

2.掌握:给出一个数能求出它的相反数.

(二)能力训练点

1.训练学生会利用数轴采用数形结合的方法解决问题.

2.培养学生自己归纳总结规律的能力.

(三)德育渗透点

1.通过解释相反数的几何意义,进一步渗透数形结合的思想.

2.通过求一个数的相反数,使学生进一步认识对应、统一规律.

(四)美育渗透点

1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.

2.通过简化一个数的符号,使学生进一步体会数学的简洁美.

二、学法引导

1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.

2.学生学法:感性认识→理性认识→练习反馈→总结.

三、重点、难点、疑点及解决办法

1.重点:求已知数的相反数.

2.难点:根据相反数的意义化简符号.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

七、教学步骤

(一)探索新知,导入新课

1.互为相反数的概念的引出

演示活动:要一个学生向前走5步,向后走5步.

提出问题“如果向前为正,向前走5步,向后走5步各记作什么?

学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.

[板书]

+5, -5

师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.

[板书]  相反数

教法说明由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)

师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

[板书]只有符号不同的两个数,其中一个叫另一个的相反数.

教法说明在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

2.理解概念

(出示投影1)

判断:(1)-5是5的相反数( )

(2)5是-5的相反数( )

(3)与互为相反数( )

(4)-5是相反数( )

学生活动:学生讨论.

教法说明对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

相反数【第四篇】

若 互为相反数,则 ,反之若 ,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

20 91286
");