九年级数学总复习教案(优推4篇)

网友 分享 时间:

【前言导读】此篇优秀教案“九年级数学总复习教案(优推4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

九年级的数学教案【第一篇】

《外国诗两首》教案

教学目标

知识目标

1.了解莱蒙托夫、休斯的经历及其创作。

2.领略诗歌深厚的文化底蕴。

能力目标

1.理解诗中的艺术形象,感受诗人的爱国思乡情怀。

2.品味诗歌语言,展开丰富的联想和想象,体会诗歌的内涵。

3.体会诗歌或平实中见真情,或深邃中显自豪的特点。

德育目标

培养学生爱国情感和健康高尚的审美情操。

教学重点、教学难点

1.了解诗歌的深厚文化背景。

2.理解诗中的艺术形象及诗人由此抒发的思想情感。

3.由于民族文化背景不同,准确地把握诗人的意念和情绪并深入诗中的意境。

课时安排2课时

教学过程

第1课时

一、创设情境,导入新课

1.密哈依尔·莱蒙托夫(1814~1841)十九世纪俄 国继普希金之后的伟大诗人。十四岁开始写诗,1837年他为普希金因决斗而死写的《诗人之死》一诗名震文坛。由于反抗专 制统治,因此屡遭流放和入狱,最后死于预谋的决斗,年仅二十七岁。

莱蒙托夫在短短十三年的创作生涯里,一共写下了四百多首抒情诗,名篇有《帆》《浮云》《祖国》,长诗二十余部,以《恶魔》《童僧》为代表,还有剧本《假面舞会》和杰出的长篇小说《当代英雄》等。

2.休斯(1902~1967)美国黑人诗人、小说家,美国黑人文艺复兴运动的,被誉为“黑人桂冠诗人”。

二、出示自学指导,学生根据自学指导自学课文

1.教师范读全诗。

2.利用书上注释读懂诗歌,学生自由诵读。

3.学生诵读全诗。

4.思考、合作探讨。

(1)《祖国》一诗充分显示了诗人在描摹自然景物上的卓越才能。诗中构置了哪些充满浓郁诗意的画画?

(2)诗人所抒发的爱国之情主要是通过描写俄罗斯的夜色及夜色中人们的活动来表现出来的。这样写有什么好处?

三、讨论交流,针对重点难点,教师适当讲解。

1.教师范读全诗。学生听读课文录音,揣摩诗歌内在旋律。

教师提示:诗句“我爱祖国,但用的是奇异的爱情”是解读诗意的关键。诗人把对祖国的感情比喻为“爱情”,统摄全诗。

2.学生自由诵读,认真领会诗句、诗段所表达的意思,思考:从诗歌内容看,诗人对祖国奇异的“爱情”指什么?

诗人没有用豪言壮语去盛赞祖国的光荣历史、英雄业绩,也没有去歌颂名山大川,无尽宝藏,而是以平实的笔调描写俄罗斯原野的景色和农家生活。平实中见真情,奇异的“爱情”表现在诗人把自己对祖国的爱和对俄罗斯大自然、对普通百姓的爱糅合,化为一体;即对俄罗斯山河景物和淳朴乐观的人民的热爱。

3.学生诵读全诗。多媒体演示俄罗斯风情图片,学生直观感受山川之美。以俄罗斯抒情名曲《卡秋莎》为伴奏音乐,师生有感情诵读全诗。

4.回答思考、合作探讨中的两个问题。

(1)诗人对俄罗斯山河风景和人民生活热烈讴歌。冷漠沉静的草原,随风晃动的森林,奔腾的激流,村间的小路,苍黄的田野,闪光的白桦,苍茫的夜色,颤抖的灯光,远近相映、声色兼备,把俄罗斯山河的雄壮之美和秀丽之美交织在一起,构成一幅绚丽变幻而朦胧流动的画面。打谷场丘堆满丰收的谷物,农家茅舍覆盖着稻草,小窗上的浮雕窗板,更有节日夜晚,农人醉酒笑谈、尽情舞蹈的场面,恰似一幅绝妙的民俗图,洋溢着俄罗斯的生活气息。

(2)诗歌在对原野景色和农家生活的描述中,隐含着诗人对祖国的真挚感情,即“真实地、神圣地、理智地理解对祖国的爱”(比勃罗留波夫语),这种爱是真实的,也是最本色的。

5.学生熟读全诗。

九年级数学全章教案【第二篇】

本节课主要内容是学习二次根式的定义和性质,重点是对二次根式的性质1和性质2的理解及应用,难点是性质1和性质2的区别与联系,上完本节课后,我的反思如下:

1.由于本节课是九年级上册第二十一章的内容,是一节新授课,而且所有学生没有教科书,因此如何在没有教科书的前提下,让学生理解并掌握本节内容,对我来说也是一次新的尝试,在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决。

2.在实际授课中,在让学生明白了本节学习目标后,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的四道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。

3.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。

4.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。

5.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。

6.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。

通过这次公开课,使我的教学技能得到了很好的锻炼,我在今后的教学中,将继续学习好的一面,对不足之处进行改善,争取使自己的教学水平得到提高。

九年级数学总复习教案【第三篇】

教学设计

(一)明确目标

首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种。

复习提问:

1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思。

2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容。

上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹。本节课我们来进一步学习常见点的轨迹的后两种。教师板书“点的轨迹之二”。

(二)整体感知

首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思。

圆是图形——这个图形是轨迹。

它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上。所以圆是到定点的距离等于定长的点的轨迹。

接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹。

在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第

四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成。

(三)重点、难点的学习与目标完成过程

在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思。这样对后两个点的轨迹的教学起到了奠基的作用。 提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成。由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l

1、l2,那么直线l

1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l

1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l

1、l2上。

这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上: 轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线。

现在我们来研究相反的问题,已知直线l1‖l2,在l

1、l2之间找一点P,使点P到l

1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:

1.直线l上的点到直线l

1、l2的距离是否都相等;

2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的。总结归纳出第五个轨迹:

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。

接下来为了使学生能准确的把握轨迹

4、轨迹5的特征,教师在黑板上出示一组练习题:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB‖CD,到AB、CD距离相等的点的轨迹。

对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”。这样学生回答的语言就不容易出现错误。

接下来做另一组练习题: 判断题:

1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线。

( )

2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆。

( )

3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线。

( )

4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线。

( )

这组练习题的目的,训练学生思维的准确性和语言表达的正确性。 这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述。

(四)总结扩展

本节课主要讲了点的轨迹的后两个。从知识的结构上可以知道:

从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹。

从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高。

对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识。所以常见五个基本轨迹要求学生必须掌握。

(五)布置作业 略 板书设计

九年级数学全章教案【第四篇】

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2.通过复移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3.旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2.再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。

(2)经过旋转,点A和点B分别移动到点E和点F的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3.△ABC和△A′B′C′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页习题4,5,6.

221381