九年级数学《二次函数》教案通用4篇
【前言导读】此篇优秀教案“九年级数学《二次函数》教案通用4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
初二二次函数教案【第一篇】
一。学习目标
1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二。知识导学
(一)情景导学
1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。
2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?
设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .
3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?
在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。
(二)归纳提高。
上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?
一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。
一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?
(三)典例分析
例1、判断:下列函数是否为二次函数,如果是,指出其中常数的值。
(1) y=1― (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2
(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c
例2.当k为何值时,函数 为二次函数?
例3.写出下列各函数关系,并判断它们是什么类型的函数.
⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;
⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;
⑶某种储蓄的年利率是%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;
⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
三。巩固拓展
1.已知函数 是二次函数,求m的值。
2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的`值.
3.一个长方形的长是宽的倍,写出这个长方形的面积S与宽x之间函数关系式。
4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式
5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.
6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长 m.
⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;
⑵求当上部半圆半径为2 m时的截面面积.(π取,结果精确到 m2)
课堂练习:
1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。
(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .
2.写出多项式的对角线的条数d与边数n之间的函数关系式。
3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。
4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。
课外作业:
A级:
1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的
是 (填序号).
2.函数y=(a-b)x2+ax+b是二次函数的条件为 .
3.下列函数关系中,满足二次函数关系的是( )
A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;
C.圆柱的高一定时,圆柱的体积与底面半径的关系;
D.距离一定时,汽车行驶的速度与时间之间的关系。
4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式。
B级:
5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式。
6.某地区原有20个养殖场,平均每个养殖场养奶牛20xx头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。
C级:
7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).
(1)写出y与x之间的函数关系式;
(2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?
(3)当圆的面积为5πcm2时,其半径增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)证明y是x的二次函数;
(2)当k=-2时,写出y与x的函数关系式。
初中数学二次函数教案【第二篇】
老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。
一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。
课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。
多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。
学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。
建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。
与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。
二次函数超级经典课件教案【第三篇】
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
二次函数教学教案参考【第四篇】
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点
1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§)
第二张:(记作§)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
上一篇:九年级数学总复习教案(优推4篇)