高三数学复习教案【优质4篇】
【序言】由三一刀客最美丽的网友为您整理分享的“高三数学复习教案【优质4篇】”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
高三总复习数学教案【第一篇】
高中数学反函数教案
教学目标
1、使学生了解反函数的概念;
2、使学生会求一些简单函数的反函数;
3、培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1、反函数的概念;
2、反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§ 反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的'。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。
师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y= f (x)解出x= f –1(y),即把x用y表示出;
(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
(II)课堂练习 课本P68练习1、2、3、4。
(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
(IV)课后作业
一、课本P69习题 1、2。
二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。
板书设计
课题: 求反函数的方法步骤:
定义:(幻灯片)
注意: 小结
一一映射确定的
函数才有反函数
函数与它的反函
数定义域、值域的关系
高三总复习数学教案【第二篇】
高中数学命题教案
命题及其关系
命题及其关系
一、课前小练:阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3 ;
(3)3 吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
二、新课内容:
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,哪些是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,哪些为真命题?哪些为假命题?
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数 是素数,则 是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5) ;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练 个别回答 教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、 将一个命题改写成“若 ,则 ”的形式:
三、练习:教材 P4 1、2、3
四、作业:
1、教材P8第1题
2、作业本1-10
五、课后反思
命题教案
课题命题及其关系(一)课型新授课
目标
1)知识方法目标
了解命题的概念,
2)能力目标
会判断一个命题的真假,并会将一个命题改写成“若 ,则 ”的形式。
重点
难点
1)重点:命题的改写
2)难点:命题概念的理解,命题的条件与结论区分
教法与学法
教法:
教学过程备注
1、课题引入
(创设情景)
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3 ;
(3)3 吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
2、问题探究
1)难点突破
2)探究方式
3)探究步骤
4)高潮设计
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,(1)(2)(4)(5)(6)是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,(2)是假命题,其它4个都是真命题。
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数 是素数,则 是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5) ;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练 个别回答 教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、 将一个命题改写成“若 ,则 ”的形式:
①例1中的(2)就是一个“若 ,则 ”的命题形式,我们把其中的 叫做命题的'条件, 叫做命题的结论。
②试将例1中的命题(6)改写成“若 ,则 ”的形式。
③例2:将下列命题改写成“若 ,则 ”的形式。
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等。
(学生自练 个别回答 教师点评)
3、 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若 ,则 ”的形式。
引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若 ,则 ”的形式,为后续的学习打好基础。
3、练习提高1. 练习:教材 P4 1、2、3
师生互动
4、作业设计
作业:
1、教材P8第1题
2、作业本1-10
5、课后反思
高三总复习数学教案【第三篇】
教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的'公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10.
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。
生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。
上面两式相加得2S=11+10+。.。.。.+11=10×11=110
10个
所以我们得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。
理由是:1+100=2+99=3+98=。.。.。.=50+51=101,有50个101,所以1+2+3+。.。.。.+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
生4:Sn=a1+a2+。.。.。.an-1+an也可写成
Sn=an+an-1+。.。.。.a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+。.。.。.(an+a1)
n个
=n(a1+an)
所以Sn=
#FormatImgID_0#
(I*一米范文 *)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
Sn=na1+
#FormatImgID_1#
d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn=
#FormatImgID_2#
=na1+
#FormatImgID_3#
d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用,
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:
(1)1+2+3+。.。.。.+n
(2)1+3+5+。.。.。.+(2n-1)
(3)2+4+6+。.。.。.+2n
(4)1-2+3-4+5-6+。.。.。.+(2n-1)-2n
请同学们先完成(1)-(3),并请一位同学回答。
生5:直接利用等差数列求和公式(I),得
(1)1+2+3+。.。.。.+n=
#FormatImgID_4#
(2)1+3+5+。.。.。.+(2n-1)=
#FormatImgID_5#
(3)2+4+6+。.。.。.+2n=
#FormatImgID_6#
=n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+。.。.。.+(2n-1)]-(2+4+6+。.。.。.+2n)
=n2-n(n+1)=-n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:
原式=-1-1-.。.。.。-1=-n
n个
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+
#FormatImgID_7#
=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16=
#FormatImgID_8#
=8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=
#FormatImgID_9#
。数列{an}是否为等差数列,并说明理由。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。
生11:1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。
生12:1、运用Sn公式要注意此等差数列的项数n的值。
2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
高三数学复习教案【第四篇】
一、教材分析
1.教材的地位和作用
在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。
y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。
2.教材的重点和难点
重点是对周期变换、相位变换规律的理解和应用。
难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。
3.教材内容的安排和处理
函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。
二、目的分析
1.知识目标
掌握相位变换、周期变换的变换规律。
2.能力目标
培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。
3.德育目标
在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。
4.情感目标
通过学数学,用数学,进而培养学生对数学的兴趣。
三、教具使用
①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。
②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。
四、教法、学法分析
本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。
以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。
上一篇:高三数学复习教案【范例4篇】
下一篇:高三数学复习教案(汇总4篇)