平方差公式实例教学教案实用(最新8篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“平方差公式实例教学教案实用(最新8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
平方差公式实例教学教案【第一篇】
通过教学我对本节课的反思如下:
1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的'局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。
不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。
2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与—b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果。我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。
3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。
4、学生错误主要是:(1)判断不出哪些项是公式中的a,哪些项是公式中的b;(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。
总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。
平方差公式实例教学教案【第二篇】
本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。
让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。
本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。
(一)知识与技能。
2.掌握提公因式法、平方差公式分解因式的综合应用。
(二)过程与方法。
1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。
3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。
4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。
(三)情感与态度。
1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。
平方差公式实例教学教案【第三篇】
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
以教师的精讲、引导为主,辅以引导发现、合作交流。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式实例教学教案【第四篇】
我参与了学校组织的“同课异构”活动,授课内容是《乘法公式——平方差公式(一课时)》。
上学期末我恰好在任县二中参加了一次关于教材研究的会议,当时河南一位从教三十多年且参与教材编写的专家指出:关于概念、公式、法则的教学一般有六个环节:引入;形成;明确表述;辨析;巩固应用;归纳提升。新课标也要求我们在教学中不只是传授学生基本的知识技能,还要以培养学生的数学能力及合作探究的意识为目标。为此,我在设计本节课的教学环节时充分考虑学生的认知规律,并以培养学生的数学素质,了解运用数学思想方法,增强学生的合作探究意识为宗旨。
我的教学流程是按照“引入——猜想——证明——辨析——应用——归纳——检测”的顺序进行的,非常符合学生的认知规律。我觉得本节课比较好的方面有以下几点:
1.在利用图形面积证明平方差公式时,我没有采用教材上直接给出剪接方法再证明的过程,只给出了原图让学生们自己去探究不同的方法。事实证明,学生们不只拼出了书上的方法,还从对角线剪开拼出了梯形,平行四边形和长方形三种方法,思维一下就开阔了。这里我并没有为了证明而证明,也没有怕浪费时间匆匆而过,而是给学生留下了充足的思考和讨论时间,真正激发了学生的思维。
2.通过设置一个“找朋友”的小游戏来辨析公式,调动了学生的积极性,活跃了课堂气氛,因此,游戏过后学生对公式的结构特征也有了更深刻的了解。
3.共享收获环节,我采用的是制作微课的方式,形式比较新颖,从认识公式到知道公式的特征,再到感悟数形结合的数学思想,最后是感受到数学运算的一种简捷美,将本节课升华到了一个新的高度。
当然,本节课也有一些遗憾和不足之处。比如,由于紧张,在授课过程中遗漏了两点,通过播放幻灯片才慌忙补充上;在处理学生练习时,为了抓紧时间完成进度没有把学生的出错点讲透讲细;游戏环节参与学生有些少,应让更多的同学动起来;当堂检测的题目应该设置上分值和检测时间,让学生限时完成,然后可以根据学生得分了解本节课的学习效果,以便下节课再有针对性的进行讲解和练习查漏补缺。
通过这次“同课异构”活动,我感觉自己在教学环节设计、课件制作和使用、导学案的规范书写等各方面都有了提高,通过各位领导和老师的点评,我也有了更多的收获,相信可以为我今后的教学所用。
平方差公式实例教学教案【第五篇】
平方差公式本节课的重点是要学生明白平方差公式及其推导(含代数验证和几何验证),并能应用平方差公式简化运算,其中关键是要学生明确平方差公式的结构特征,准确找到a、b。为了让学生对平方差公式有个全面的认识和了解。先让学生计算符合平方差公式的两位数乘法,进而将数转化为字母,从代数的角度,利用多项式乘多项式的知识,推导出平方差公式,接着从几何角度让学生加以解释说明。在此基础上,通过分析公式的结构特征,加深对公式的理解。之后,设计了一个“寻找a、b”的环节,通过这个练习进行难点突破。引导学生反思练习过程,得出“谁是a,谁是b,并不以先后为准,而是以符号为准”这一结论。紧接着给出两组例题,考察学生对公式的应用。最后通过一组判断题和补充练习,拓展学生的.思维水平。
为了给学生渗透数形结合的思想,要从代数、几何两个角度证明平方差公式,但是从哪个角度入手,有利于知识的衔接,便于学生理解。最终决定给让学生猜想结论,再用代数方法加以证明,后给出几何解释,符合知识的发生过程。
对于课本中的公式文字说明是“两数和与这两数差的积”的理解:公式中“a、b不仅表示一个数或字母,还可以表示代数式”。但这里说的是“两数”,原因是所有的规律最初都是在具体的数字中发现的,然后才推广到字母。所以这里说的数不再是具体的数,而是代表一个整体;公式中说的“两数和与两数差的积”,从这个角度说,这两项应是完全相同的,差别只在于运算符号上。但由于我们之前介绍过“代数和”,(a+b)(a-b)也可以理解为(a+b)[a(-b)],就像许多教参上说的,是相同项与互为相反数的项,这样就与课本定义发生矛盾。为了避免这个问题,我在介绍公式结构特征时,只说“有一项完全相同,另一项只有符号不同”,学生可以自己去理解。
平方差公式实例教学教案【第六篇】
《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:
1、把数学问题“蕴藏”在游戏中。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
2、充分重视“自主、合作、探究”的教学方式的运用。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
3、自置悬念,享受成功。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
4、切实落在实效上。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
5、值得注意的是:
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
平方差公式实例教学教案【第七篇】
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
平方差公式实例教学教案【第八篇】
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。