用比例知识解答应用题人教版六年级教案设计(优质8篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“用比例知识解答应用题人教版六年级教案设计(优质8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
用比例知识解答应用题人教版六年级教案设计【第一篇】
教学目的。
一、计算练习。
做练习二十三的第5、6、11题。
1、第6题,让学生独立口算,共同核对得数。
2、第6题,让学生独立笔算,填出得数,集体订正。
3、第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。
二、应用题解题练习。
练习二十三的第7-10题及第12、14、15题。
1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:
7200÷12÷67200÷(12÷6)。
让学生比较两种解法的不同。
2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。
3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。
4、第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。
5、第14、15题,让学生独立列出综合算式解答,集体订正。
三、应用题补充条件、问题练习。
做练习二十三的'第13、16题。
1、第13题,读题,明确条件,然后给予适当的启发。
3、整理和复习。
复习混合运算式题、文字题和连乘、连除应用题。
教学内容。
课本第116页的第1-3题;练习二十六的第1-4题。
教学目的。
1、通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。
2、使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。
教学过程。
一、复习混合运算。
1、混合运算式题。
(1)做课本第116页第1题及补充题。
(2)做练习二十六的第1题。
学生独立做,教师巡视,发现问题,集体订正。
(3)做练习二十六的第3题。
左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。
2、两步计算文字题。
做第116页的第2题。
让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式。
做练习二十六的第2题。
让学生独立列出综合算式计算,指名答出,共同订正。
二、复习连乘、连除应用题。
1、做课本第116页的第3题。
让学生根据题意画线段图,教师巡视指导。
解答后,引导学生把它改编成用除法计算的两步应用题。
2、练习二十六的第4题。
让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。
用比例知识解答应用题人教版六年级教案设计【第二篇】
这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。
二、教学目标。
1、在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。
2、联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。
三、教学重难点。
1、重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。
突破方法:小组交流讨论,探究比例中未知项的各种计算方法,并从中进行优化。
2、难点:灵活运用解比例的方法解决问题。
突破方法:了解各种和比例知识相关的问题,掌握应用比例的基本性质灵活解决这些问题的方法。
四、教法与学法。
1、教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。
2、学法:学生独立探究,全班交流,优化出解比例的方法。
五、教学准备。
1、教师:教材例题投影图。
2、学生:常规学习用具。
六、教学过程。
复习导入1、复习。
(1)什么叫做比例?什么叫做比例的基本性质?
(2)用比例的基本性质判断下面哪一组中的`两个比可以组成比例?
18:20和:8、100:和10:导入新课。
(一)教学例二。
1、投影出教材第42页例二。
2、阅读与理解。
(1)学生独立读题,找出已知条件和所求问题。
(2)小组内交流获得的信息。
3、分析与解答。
(1)分析题意,根据题意描述两个相等的比。模型高度:实际高度=1:10。
(2)指出其中的未知项,说一说你想怎样解答。
设计意图:引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。
例如,把比看作除法,那么x:320=1:10就可以转化成x/320=1/10,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把x:320=1:10转化成10x=320*1来解。
10x=320*1(问:根据什么?)x=320*1/10x=32。
答:这做模型高32m。
(二)教学例三。
1、出示教材第42页例三。
解比例/=6/x。
2、让学生说说这个比例中的内项和外项分别是什么。内项是和6,外项是和x。
3、学生独立解答。
教师巡视,进行个别辅导。
4、组织交流订正解:*x=*6x=*6/=15/4。
5、小结。
提问:解比例的方法是什么?
比例就是一种特殊的方程,不论在书写格式还是验算方法上,它与解方程都是相同的。解比例时,先根据比例的基本性质把比例转化为方程,再按解方程的方法进行解答。
七、巩固练习。
1、教材第42页“做一做”第一题。
这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。
2、教材第42页“做一做”第二题。
这道题的解题方法和例题类似,可以让学生独立思考解答。
3、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?
八、课堂小结。
通过这节课的学习,你有什么收获?
今天这节课,我们学习了解比例的知识。在解比例时,我们先根据比例的基本性质把比例转化成方程,再按照解方程的方法进行解答。
九、板书设计解比例。
例2:解:这座模型的高度是xm。x:320=1:10。
10*x=320*1(根据比例的基本性质)x=320*1/10x=32。
答:这座模型高32m。
用比例知识解答应用题人教版六年级教案设计【第三篇】
教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教学过程:
一、四顾旧知,复习铺垫。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
二、引导探索,学习新知。
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……。
(1)出示下表,填表。
一列火车行驶的时间和路程。
时间。
路程。
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)。
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)。
(2)教师小结:
同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)。
2、教学例2:
(1)花布的米数和总价表。
数量1234567……。
总价……。
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)。
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书p39,进一步理解正比例的意义。
x/y=k(一定)。
4、看书p40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、p41做一做。
2、p43~44练习七第1~5题。
第二课时。
教学内容:p42成反比例的量。
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教学过程:
一、复习铺垫。
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱元,1本;元,2本;元,4本;元6本.
2、成正比例的量有什么特征?
二、探究新知。
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征--成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)。
三、巩固练习。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节。
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习。
p45~46练习七第6~11题。
第三课时。
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题。
出示表1。
路程(千米)5102550100。
时间(时)1251020。
表2。
速度(千米/时)1005020105。
时间(时)1251020。
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程=速度=时间。
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系。
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习。
1、做一做。
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价-。
总价一定,数量和单价-。
数量一定,总价和单价-。
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定,和成比例。
被除数-定,和成比例。
(2)前项一定,和成比例。
(3)后项一定,和成比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
用比例知识解答应用题人教版六年级教案设计【第四篇】
五、课题:
教学目的。
1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。
2.通过复习,培养学生的分析能力以及综合能力.。
3.通过复习,培养学生认真、仔细的学习习惯.。
教学重点。
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。
教学难点。
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.。
教学过程。
一、复习准备.。
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……。
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)。
二、复习探讨.。
(一)教学例4.。
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.。
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……。
3.教师质疑.。
(1)5问和6问为什么解答方法不同?(单位1不同)。
(2)3问和4问的问题有什么不同?(单位1不同)。
(二)例题变式.。
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多,蜡笔画有多少幅?
(1)学生独立解答.。
(2)学生讨论两道题的区别.。
(三)深化.。
如果题目中的分数发生了变化,我们还会解答吗?
(1)学生独立解答.。
(2)学生讨论两道题的区别.。
三、巩固反馈.。
1.分析下面每个题的含义,然后列出文字表达式.。
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)的电视机价格比降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.。
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.。
男生比女生多20%,女生就比男生少20%.。
四、课堂总结.。
通过今天这堂课,你有什么收获吗?
五、课后作业.。
某体操队有60名男队员,
(1)女队员比男队员多,女队员有多少名?
(2)男队员比女队员多,体操队员共有多少名?
(3)女队员比男队员少,女队员有多少名?
(4)男队员比女队员少,体操队员共有多少名?
六、课题:用比例知识解答应用题。
教学目的。
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.。
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.。
教学重点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学难点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学过程。
一、复习准备.。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.。
(2)总价一定,每件物品的价格和所买的数量.。
(3)小朋友的年龄与身高.。
(4)正方体每一个面的面积和正方体的表面积.。
(5)被减数一定,减数和差.。
谈话引入:我们今天运用正反比例的知识来解决实际问题.。
(板书:用比例知识解应用题)。
二、探讨新知.。
(一)教学例5(用比例解答下题)。
1.学生读题,独立解答.。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
(二)反馈.。
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.。
四、课堂总结.。
通过这堂课的学习,你有什么收获?
五、课后作业.。
六、板书设计。
用比例知识解答应用题人教版六年级教案设计【第五篇】
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题利息第9课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
重点:掌握利息的计算方法。
难点:正确地计算利息,解决利息计算的实际问题。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
内容与环节预设个人二度备课课后反思。
二、新课。
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
本金:存入银行的钱叫做本金.小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读p99页表格,了解同一时期各银行的利率是一定的。
4.利息的计算。
(1)出示利息的计算公式:利息=本金×利率×时间。
(2)计算方法:
按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。
内容与环节预设个人二度备课课后反思。
(3)两年后取款,李奶奶能得到元利息吗?为什么?
(4)学生计算后回答,教师板书:。
1000×%×2=(元)1000×%×2=(元)。
×5%=(元)×(1-5%)=(元)。
比较两种方法?
加上她存入本金1000元,到期时她可以实际取回多少元?
5.练习。
1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
2、完成100页做一做。
3、完成练习二十三的第9题。
三、小结:这节课你懂得了什么?
板书。
设计利息。
利息=本金×利率×时间。
1000×%×2=(元)1000×%×2=(元)。
×5%=(元)×(1-5%)=(元)。
个人二度备课:课后反思:
作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:
教后整体反思。
用比例知识解答应用题人教版六年级教案设计【第六篇】
教学要求:
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习。
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a×1/6=b×1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
实践与应用。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
板书设计:整理和复习。
比例的意义。
比例比例的性质。
解比例。
正反比例正方比例的意义。
正反比例的判断方法。
比例应用题正比例应用题。
反比例应用体题。
用比例知识解答应用题人教版六年级教案设计【第七篇】
(一)教学例5(用比例解答下题)。
1.学生读题,独立解答.。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
(二)反馈.。
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.。
四、课堂总结.。
通过这堂课的学习,你有什么收获?
五、课后作业.。
用比例知识解答应用题人教版六年级教案设计【第八篇】
教学目标:
使学生进一步明确列方程解应用题的关键。
沟通与算术方法解的联系与区别,排除知识间的干拢,进一步提高学生解决简单实际问题的能力。
教学过程:
想一想:列方程解应用题的关键是什么?(找准题中的等量关系,或者说找出数量间相等的关系。)。
根据例子找出数量间相等的关系。
例:“篮球比足球多5个”。数量是相等的关系是:足球的个数+5=篮球的个数。
练习:
基本练习..
学生独立解答例3。然后说主自己的分析解题思路,最后理清下面问题。
从题目的本身和解答方法进行比较看,两道题基本数量关系是什么?
客车和货车每时共行的距离×时间=甲乙两站间铁路长。
在什么情况下用算术方法解答较简便?在什么情况下列方程解比较简便?
总结:第(1)题是已知两车速度与时间,求路程,直接改用算术方法(乘法)解答很方便。第(2)题是已知两车速度与路程,求时间,可根据第(1)题中的等量关系列出方程式--60x+55x=460或者(60+55)x=460较为方便。如果用算术方法解则需逆向思考。第3题也说明了这个道理。
小段练习:
说说下面各题用什么方法解答较简便?为什么?
巩固练习。
完成教材109页第1题。
学校图书室有文艺书2280本。比科技书本数的3倍还多48本,科技书有多少本?设科技书有x本,选择下面正确的方程。
3x-48=2280。
3x+48=2280。
2280+3x=48。
完成教材109页2题、3题。
全课总结(略)。
上一篇:校长现实表现材料范例精编4篇
下一篇:工会工作要点【热选8篇】