小学数学用比例解应用题教案【优秀2篇】
通过实例引导学生理解比例的概念,结合生活中的应用题,培养解题能力和逻辑思维,强调比例的实际意义与计算方法,提升学生的数学素养。下面由阿拉网友分享的“小学数学用比例解应用题教案”范文,供您写作参考,希望您喜欢。
小学数学用比例解应用题教案 篇1
教学目标
1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。
2.复习用正比例方法解答应用题。
3.复习用反比例方法解答应用题。
教学重点和难点
判断两种相关联的量成什么比例;确定解答应用题的方法。
教学过程设计
(一)复习数量关系
判断两种相关联的量成不成比例,确定解答应用题的方法。
1.被除数一定,除数和商。
2.一条路,已修的和未修的。
3.梯形的上、下底长度一定,梯形的面积和它的高度。
4.每块砖的面积一定,砖的块数和铺地面积。
5.挖一条水渠,参加的人数和所需要的时间。
6.从甲地到乙地所需的时间和所行走的速度。
7.单位面积一定,播种面积和总产量。
8.时间一定,速度和距离。
9.订阅《北京儿童》的份数和所需钱数。
(二)复习应用题
1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?
第一步,先找对应关系:
8天56台
31天?台
第二步,判断成什么比例?(每天生产的台数一定,成正比例。)
请你在对应关系的旁边写上正字,决定用正比例方法做。
解 设到月底可生产x台。
x=217
答:照这样速度月底可生产217台。
2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?
第一步,先找对应关系:
20页600本
24页?本
第二步,判断成什么比例?(纸张总页数一定,成反比例。)
请你在对应关系的旁边写上反字,决定用反比例方法做。
解 钉成24页一本的练习本,可钉x本。
24x=20600
x=500
答:如果钉成24页一本的练习本可钉500本。
学生独立地用老师教的分析应用题的思路和方法在本上做两道题。
(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?
(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?
(三)练习解答两步的比例应用题
1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?
黑板上的对应关系变成:
解 设x天读完。
(6+4)x=630
10x=630
x=18
答:18天可以读完。
2.在第1题的'基础上,改变问题。
李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?
对应关系:
解 设如果每天多读4页,x天读完。
(6+4)x=630
10x=630
x=18
30-18=12(天)
答:提前12天读完。
(指导学生分析、比较。)
以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)
练习(学生独立分析,做题。)
1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了到达乙城,甲城到乙城有多少千米?
解 设甲城到乙城有x千米。
3x=105(3+)
x=147
答:甲城到乙城有147km。
2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?
解 设剩下的x天可以收割完。
90x=554
x=3
答:剩下的3天可以收割完。
(再用间接设的方法做两道题。)
1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?
1642=24x
42-x
2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?
12x=4815
x-48
(四)总结
这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。
课堂教学设计说明
解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。
第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。
第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。
第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。
小学数学用比例解应用题教案 篇2
教学内容
教科书第27页的第4~5题,练习六的第4~6题.
教学目的
1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.
2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.
3.通过一题多解,培养学生思维的变通性和灵活性.
教具、学具准备
自制多媒体课件.
教学过程
一、揭示课题
今天我们复习用比例的知识解答应用题.
二、回忆
用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:
(1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.
(2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.
(3)解方程.
(4)验算.
(5)答题.
三、分层练习
1.基本练习.
(1)判断下面每题中的两种量成什么比例.
①速度一定,所行的路程和时间.
②一本书的总字数一定,每行的字数与行数.
③苹果的单价一定,购买的数量和总价.
④工作总量一定,工作效率和魇奔洌?/P>
(2)实际运用.
①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
③蚯蚓能消化许多垃圾,有人将吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?
学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.
2.综合练习.
(1)1篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?
提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.
解:设需打印x行.
30×96=32x
x=90
90÷35=2(页)……20(行)
答:这篇文章需打印90行,共需3页纸.
(2)扬扬骑车从家经过游乐场到少年宫,全程需小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?
学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.
可能出现的答案有:
(1)解:设从家直接到少年宫,要x小时. (2)解:设可以省x小时.
(11+7)∶=15∶x (11+7)∶=15∶(-x)
18x=×15 或 (11+7)∶=(11+7-15)∶x
18x= 解答过程略.
x=
-=(小时)
答:可以省小时.
3.发展练习.
六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.
第一小队 10本 ( )元
第二小队 12本 ( )元
第三小队 11本 ( )元
学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.
可能的方法有:
方法一:792÷(10+12+11)=24(元) 方法二:792×10/33=240(元)
24×10=240(元) 792×12/33=288(元)
24×12=288(元) 792×11/33=264(元)
24×11=264(元) 答(略).
答(略).
方法三:解:设第一小队应交x元.
792∶(10+12+11)=x∶10
x=240
答(略).
下一篇:返回列表