小学六年级数学《圆柱的体积》教案精编5篇
【阅读指引】阿拉题库网友为您分享整理的“小学六年级数学《圆柱的体积》教案精编5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
小学六年级数学教案《圆柱的体积》1
教学目标:
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:
掌握圆柱体积公式的推导过程。
教学准备:
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:
一、情境激趣导入新课
1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的`体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)
二、自主探究,学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)
师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式
(二)猜想
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4)你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长,高4m。
三、练习巩固拓展提升
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。……()
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()
(3)圆柱的底面积越大,它的体积就越大。……()
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。……()
2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是,算一算这个花坛内一共填土多少立方米?
3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?
四、全课总结自我评价
通过这节课的学习你有什么感受和收获?
教学反思:
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
《圆柱的体积》的教学设计2
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重、难点:掌握圆柱体积公式的推导过程。
教学流程:
一、复习引入
1、什么是体积?
2、怎样计算长方体和正方体的体积?
3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。
二、活动导学、精讲点拨
1、观察比较,建立猜想
引导学生观察例4的三个立体图形,提问:
⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?
⑵ 长方体和正方体的体积一定相等吗?为什么?
⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
2、实验操作
(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。(等于底面积乘高)。
大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。那用什么办法验证呢?请独立思考。
(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?
(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?
(3)指名两位同学上台操作教具,让学生观察。
师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。
(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。)
演示一组动画(将圆柱底面等分成32份、64等份……)课件演示。问:和你的想象一样吗?使学生清楚地认识到:拼成的立体图形会越来越接近长方体。
3、观察比较,推导公式
(1)提问:拼成的长方体与原来的圆柱有什么关系?出示讨论题。
a、拼成的长方体的底面积与原来圆柱的底面积有什么关系?
b、拼成的长方体的高与原来圆柱的高有什么关系?
c、拼成的长方体的体积与原来圆柱的体积有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
(2)想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
(3)如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么,圆柱的体积计算公式你能写出来吗?试试看。
指名同学到黑板板书:v=sh
我们发现圆柱拼成长方体后体积,底面积,高没有变,那什么变了呢?
指名回答。(形状变了;表面积变大)
4、回顾反思
回顾圆柱体积公式的探索过程,你有什么体会?
三、练习运用、迁移创新
1、做练习三第1题。
让学生口头列式并完成填表。问:要求体积必须知道底面积和高吗?
2、教学“试一试”。
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
3、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
4、做“练一练”第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生先根据底面周长求出底面积。
5、做练习三第2题。
学生读题后,提问:计算电饭煲的容积,为什么要从里面量尺寸?
6、拓展题
把一个高是20厘米的圆柱切拼成一个近似的长方体,表面积比原来增加了200平方厘米,圆柱的体积是多少立方厘米?
四、课堂小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
小学六年级数学教案《圆柱的体积》3
教学内容:
人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:
掌握和运用圆柱体积计算公式
教学难点:
圆柱体积公式的推导过程
教具学具准备:
教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
‖‖‖
长方体体积=底面积×高
用字母公式怎样表示呢?v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米
②底面半径2厘米,高5厘米
③直径10厘米,高4厘米
④周长厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。()
②圆柱的底面积扩大3倍,体积也扩大3倍。()
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。()
④圆柱体的底面直径和高可以相等。()
⑤两个圆柱体的底面积相等,体积也一定相等。()
⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)
学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱体积=底面积×高
长方体体积=底面积×高
《圆柱的体积》数学教案4
教学内容:
P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的`高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)
《圆柱的体积》的教学设计5
教学过程
一、揭示课题,确定目标
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小
谈话:这堂课我们主要解决三个问题:(出示探究问题)
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
设计意图直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本
1、提出问题
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
统一为:长方体或正方体的体积=底面积×高
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的转化过程,边出示、边交流)
设计意图在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
三、合作交流 发展能力
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
四、师生合作 归纳结论
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高
所以:圆柱的体积 =底面积×高
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)
长方体的体积=底面积×高
圆柱的体积 =底面积×高
交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
设计意图要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
下一篇:返回列表