质数和合数教学设计【实用5篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“质数和合数教学设计【实用5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

质数和合数【第一篇】

教材分析:,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。是求最大公约数、最小公倍数以约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。

教学内容:九年义务教育六年制小学教科书第58页、第59页上半页的内容及练习十三中的1~4题。

教学目的:

1、使学生掌握的概念,知道它们的联系和区别。

2、能正确判断一个数是质数还是合数。

3、培养学生判断推理能力。

教学重点:掌握质数、合数概念,会判断一个数是质数还是合数。

教学难点 :判断一个数是质数还是合数。

教学关键:使学生把握住的根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。

教具准备:纸片、投影器、投影片等。

教学过程 :

一、复习。

师:“我们学过求过一个数的约数,那么每个数的约数的个数又有什么规律呢?这节课我们来探索这个问题。”

师:“谁能说说什么是约数?”

生:“如果数a能被数b(b不等于0)整除,a就叫做b的倍数,b就做a的约数(或a的因数)。

师:“谁又能说说每个数的约数有什么特点?”

生:“一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。”

二、教学新课。

1、教学例1。

教师出示例1(纸片)时说:“请两名学生分别写出左右两排数的约数。”点两名学生上黑板完成例1。

例1    写出下面每个数的所有的约数。

1的约数:1                                   7的约数:1、7

2的约数:1、2                           8的约数:1、2、4、8

3的约数:1、3                           9的约数:1、3、9

4的约数:1、2、4               10的约数:1、2、5、10

5的约数:1、5                       11的约数:1、11

6的约数:1、2、3、6       12的约数:1、2、3、4、 6、12

师:“谁能根据这些数的约数的个数进行分类?”教师在黑板上板书:

有一个约数的是:(生)1

有两个约数的是:(生)2、3、5、7、11

有两个以上约数的是:(生)4、6、8、9、10、12

请一名学生上黑板进行分类,其余学生在书上完成。

师:“一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)(张贴质数概念)。例如,2、3、5、7、11都是质数。谁能说说,还有哪些数是质数?”

生:“13、17、19、23……”

师:“质数的个数数得完吗?”

生:“数不完,质数的个数有无数个?”

师:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(张贴合数概念)。例如,4、6、8、9、10、12都是合数。谁能说说,还有哪些数是合数?”

生:“4、6、8、100……”

师:“合数的个数数得完吗?”

生:“合数的个数数不完,它的个数有无数个。”

师:“1不是质数,也不是合数(张贴概念)。”

2、教学例2

师:“根据的定义,我们可以判断一个数是质数还是合数。请看例题。”

投影:

判断下面各数,哪些是质数,哪些是合数。

17        22        29        35        37        87

质数有:(生)17、29、37

合数有:(生)22、35、87

师:“根据的定义,质数只有1和它本身两个约数,合数除了1和它本身外,还有别的约数,请某某同学上来找出所有的质数,并把答案填在投影片上。”

学生填完后,师:“请你说说是怎样想的。”

生1:“17、29、37是质数。因为17只有1和17两个约数,29只有1和29两个约数,37只有1和37两个约数。”

师:“请某某同学上来找出所有的合数,并把答案填在投影片上。”学生填完后,

师:“请你说说是怎样想的。”

生2:“22、35、87是合数。因为22除了1和22两个约数外,还有2、11两个约数,35除了1和35两个约数外,还有5、7两个约数,87除了1和87两个约数外,还有3、29两个约数。”

师:“这两位同学回答得很好,老师相信大家都能够判断一个数是质数,还是合数了。下面请同学在书上第59面完成中间的做一做。”

投影:

下面哪些数是质数,哪些是合数?

19        21        43        67

质数:(生)19、43、67

合数:(生)   21

请两名学生在投影片上分别写出答案,并请学生说说怎样想的。

师:“请同学们做一做,20以内的数中,有哪些数是质数。”

学生自己动手制出20以内质数表。

师:“如果给我们一个数,如87,我们怎样知道这些数只有1和它本身两个约数,是个质数呢?”

生:“我们可以用2、3、5、7、9……去除这个数,如果这个数不能被2、3、5、7、9……这些数整除,就说明这个数只有1和它本身两个约数,那么它就是一个质数。”

师:“这位同学回答得非常好,判断一个数是不是质数,我们通常可以用2、3、5、7、9、11……这些数除这个数,如果都不能整除,就说明这个数是质数。”

三、巩固练习。

师:“下面我们一起来做几个练习,请看屏幕。”

投影:题一

检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里。

27  37  41  51  57  69  83  87

质数                                                 合数

投影:题二

在自然数1~20中:

奇数有:                               偶数有:

质数有:                               合数有:

投影:题三

下面的判断对吗?说出理由。

(1)所有的奇数都是质数。

(2)所有的偶数都是合数。

(3)在自然数中,除了质数以外都是合数。

(4)1既不是质数,也不是合数。

四、引导小结,板书课题。

师:“请同学回顾一下,这节课我们学习了什么知识?”

生:“学习了质数、合数的定义;知道了1既不是质数,也不是合数;学会了判断一个数是质数还是合数。”

师:“今天,我们学习的知识的课题就是……(板书课题:)。”

五、布置作业 。

师:“请同学们从课本第62面的第1题中的99数中,先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉),自己动手制作100以内的质数表。做完以后与第59面中间的质数表对照一下,看谁能够一气呵成,制出100以内的质数表。我们今天到此为止,下课!”

六、简评。

这节课的主要特点是:循循善诱,层层深入。首先,教师引导学生通过对例1中12个数的约数的个数的分类,初步使学生认识到根据一个数的约数的个数,可以把自然数分为三类:质数、合数和1。其次,教师进一步让学生认识这三个概念。再次,教师让学生从例2中渐渐熟悉判断一个数是质数还是合数的方法。最后,通过练习使学生完全掌握判断一个数是质数还是合数的方法。同时,让学生知道1既不是质数也不是合数。

质数和合数【第二篇】

课题课时第六课时班级五(3)编写者一、教材内容分析“质数和合数”是人教版小学数学第十册第二单元第6课时的内容。要求使学生理解质数、合数的意义,初步掌握判断一个数是质数还是合数的方法。它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公因数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。教学中,我着眼于学生自主探究获取概念,揭示出质数与合数的内涵,培养学生的思维能力和探究精神,选择了探究性的学习方式。通过体验与探究的活动,让学生亲历概念的自我建构过程,培养学生勇于探索的科学精神。二、教学目标(知识与技能、过程与方法、情感态度与价值观)1.通过学生的主动参与,在操作体验的基础上理解质数和合数的意义,明确质数与合数的内在特征,感受素数、合数和1与因数之间的关系。 2.引导学生经历操作,体验,再操作、再体验的数学活动过程,并在这一过程中深刻把握质数与合数的特征,发展学生的提出问题和研究解决问题的能力,帮助学生建构数的特征。3.形结合的数学建构模式;使学生初步认识数学与人类生活的密切联系,体验学习活动充满着探索与创造,感受数学的严谨及数学结论的确定性。三、学习者特征分析在学习该知识前,学生已经认识了奇数和偶数、因数与倍数、2、5、3倍数的特征等知识,掌握了一定的数学思想方法,而且五年级学生的思维水平总体上还处于在具体运算操作的发展阶段,形象思维是他们的优势。绝大多数学生对质数与合数的概念相对陌生,但也有部分学生对通过不同的信息渠道对知识有了不同程度的认识。四、教学策略选择与设计   质数和合数是一节概念教学课,概念多又抽象易混淆,与学生的生活有一定的距离,是本单元教学的难点,所以,根据学生和知识本身的特点,本节课采用动手操作、观察、比较、归纳、分析、推理等方法进行学习。五、教学环境及资料准备课件、小正方形、数字卡片六、教学过程教学过程教 师 活 动预 设 学 生 行 为设计意图及资源准备一、导入新课二、自主探索师:今天老师为每组都准备了一些小方块,你们能用上所有的小方块摆出长方形或正方形吗?(学生分成七组,每组的数量分别是4、5、7、9、11、12、24) 1、师:咱比一比哪一组的设计方案最多,并将设计好的方案记录在表格里。记 录 单 总块数 每行的块数 行数 2.交流并引发冲突 (1)引导学生分组汇报研究成果(教师帮助学生记录研究成果)第一组:4=4×1=2×2 第二组:5=5×1 第三组:7=7×1 第四组:9=9×1=3×3 第五组:11=11×1 第六组:12=12×1=6×2=4×3 第七组:24=24×1=12×2=8×3=6×4 师:第七组太棒了!,你们真了不起,设计的方案最多。你们是今天当之无愧的冠军!(引发冲突)(2)教师收集学生的意见并记录下来教师板书学生的质疑(3)教师适时的评价,引发学生进一步研究 师:相信你们说的都有各自的道理,刚才我看到了每个组的同学都在想办法,想使方案尽可能多,但有些数摆完后,方案只有一种,有的就不止一种。我们一起来看一看。 师:那么方案的多少到底与谁有关呢?刚才老师提供的学具不公平,如果让同学自己选你们愿意吗?3.再次尝试 (1)老师呈现再次可供选择的块数(46、25、59、32、36、51) (3)引导学生交流研究体验,发现因数的个数是影响方案多少的决定性因素。师:通过刚才的研究对于影响的三种因素,你们有什么新的想法?(通过再次的体验,引导学生关注数与因数之间的关系) 4.比较归纳 (1)观察归纳师:既然因数的个数是决定性因素,就让我们共同观察我们曾经研究过的数的因数。方案只有一种的这些数有什么特点? (2)引导学生归纳质数的概念 (3)在学生准确归纳质数的基础上归纳合数的概念 (4)判断练习每一个学生利用手中的数字牌,独立判断自己手中的数是质数还是合数,请判断是质数的同学到前排,是合数的同学们留在座位上。 5.引发思考 (1)过渡:从毕达哥拉斯、欧几里得和陈景润等数学家对质数和合数的探索,激发学生进一步探索和研究。 (2)对于质数和合数还有没有进一步想研究的问题?6.课外拓展:对质数和合数还想有更多的了解,可进一步查询有关的资料。(2)学生动手摆。(4)学生分成七组研究并记录研究方案。生可能会有异议:不公平。教师引导学生将方案中只有一种和方案不止一种的数形图选出来,分别呈现在黑板上。(2)各组学生分别派代表自主选择并进行研究。请学生互相判断并提出质疑。引发学生提出对质数相关知识的已有了解,以及产生的问题。设计意图:教师进行巡视,解答学生研究过程中的问题,并注意收集学生对方案多少产生的疑惑,为引导学生进一步研究做好准备。这一环节设计的目的主要是引导学生初步建立数与形之间的感性认识,为进一步的研究奠定基础。设计意图:教师通过课堂评价有意制造矛盾冲突,由此引发学生进一步探索和研究的欲望。设计意图:引导学生从因数的特点、因数的个数和数形图不同的维度进行观察。设计意图:认识概念并形成知识的建模。以往的教学是通过找因数来认识质数与合数的特征的,今天,我们还把形与数紧密地结合起来,前者更加抽象,后者更加直观,两者相结合,便于学生能从形的角度理解质数与合数。三、巩固练习巧判断。(1)师:我们想判断一个数是质数还是合数,应该根据什么来判断呢?(2)判断并说明理由。出示:29、38、27、89、16、95、17、77、76\生判断并说明理由。设计意图:    通过练习让学生进一步明确质数和合数的概念,在不断的发现中明确可以用合理的方法巧妙判断。四、总结   关于质数和合数的问题很多,著名的哥德巴赫猜想就是其中之一。哥德巴赫猜想被称为“数学皇冠的明珠”。大家可以去找相关的书籍或上网查资料。板书设计七、教学反思

质数和合数【第三篇】

一、教学目标

1、使学生理解质数和合数的意义,能正确判断一个数是质数还是合数。

2、知道100以内的质数,熟记20以内的质数。

3、在学习活动中培养学生自主探索、独立思考的能力。

二、教学重难点理解质数和合数的意义,会正确判断。

三、教学过程

1、复习导入

74    900     105     228  判断这些数分别是几的倍数。

自然数按照是否是2的倍数可以分成哪两类?最小偶数是几?

2、自主探究,理解含义

⑴今天,我们来学习自然数的另一种分类方法,按因数的个数分。请同学们拿出已经做好的1~20的因数,根据因数个数完成表格。

⑵交流分法,理解质数和合数的意义。

一个数,如果只有1和它本身两个因数,这样的数叫质数,也叫素数。

一个数,如果出了1和它本身,还有别的因数,这样的数叫合数。

因为1只有一个因数,所以1既不是质数也不是合数。

⑶20以内的质数和合数有哪些,读一读。

⑷判断这些数是质数还是合数。说明理由。

8    35   84     11     111      9000

小结:除了1和它本身以外,它还是其他数的倍数,这个数就是合数。

⑸练习  课堂第8页填空

学生独立完成,交流校对。

3、找出100以内的质数,并整理。

我们已经认识了质数和合数两个新朋友,现在请同学们快速地找出表格中100以内的质数。

⑴先思考交流,有什么好办法可以帮我们又快又准确地找出质数,一个也不漏下。

⑵独立完成,把找到的质数读一遍。

⑶整理100以内大的质数,看看哪个同学的整理方法又清楚又方便记忆。

展示、评价     11   31    41    61    71

2

3     13    23    43    53    73     83

5

7     17     37     47     67     97

19    29     59     79     89

⑷观察100以内质数表,你有什么发现?

除了2,其他质数都是奇数。     质数的个位一般不会是0、2、4、6、8除了2和5这两个数。

⑸练习    书本25页判断题

交流,说明理由

4、拓展小游戏《猜猜我是谁》

我既不是质数也不是合数。(     )

我的因数只有1和3。(     )

我是20以内最大的质数。(     )

我比10小,既是合数又是奇数。(     )

把我两个数位上的数字交换位置,仍是质数。(     )

我们是质数,把我们相加和是20,把我们相乘积是91,。(     )(      )

5、总结 揭题

经过这节课的学习,你知道按因数的个数怎样给自然数分类了吗?

这样分类,包括所有的自然数了吗?0怎么办?为什么?

如果要给今天的学习内容起个名字,你会起什么呢?

教学反思

早上第一节在三班试教,感觉很差。

问题一:问题的针对性不够明确,导致浪费了很多时间。

试教时出现的状况:分类时,让学生按自己的方式,结果出现五花八门的分法,再分析引导花了七八分钟时间。

处理办法:分类时,出现表格,让学生根据表格要求进行分类。

问题二:知识点的小结和提炼不够及时,导致学生在练习中的错误很多。

试教时出现的状况:通过探究得出质数和合数的意义后,马上进行填空练习,这时候学生对意义还没有进过咀嚼消化,因此练习中错误很多。

处理办法:通过探究得出质数和合数的意义后,加入一个简单练习,判断这些数是质数还是合数,通过判断巩固意义,熟练判断方法。再做综合性的填空练习,效果会更好。

经过调整,总算在下午开课时还算顺利地把课上下来了。

质数与合数【第四篇】

课件。

2. 学具准备:边长1厘米的小正方形若干、小组合作表格。

教学过程

一、谈话导入

师:同学们,今天我们继续研究有关数的知识。

(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)

师:看到这些数,你想到了什么?

生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……

师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?

今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)

[通过复习,了解学生的知识储备,为下面的学习奠定基础。]

二、动手操作,探索新知

(一)操作,感悟

师:请两个同学商量一下你们想研究哪个数。

(学生商量研究的数。)

师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。

我来提出活动要求:

(1)你们研究哪个数,就从学具袋中取出几个正方形。

(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。

(3)将你摆的结果,填在表格中。

同时请你思考问题:

(1)你用几个小正方形拼出了你的长方形或正方形?

(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?

(两个学生利用学具独立操作、拼摆。)

(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)

[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]

(二)发现图形与算式的关系

师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?

(图形消失,出示乘法算式:7=7×1。)

生:长与宽相乘就得到了正方形的个数。

师:用××个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?

(学生根据自己拼摆的结果作出相应的回答。)

(三)发现算式与因数的关系

质数与合数【第五篇】

教学目标 

(一)准确地理解和掌握质数和合数的意义。

(二)会判断一个数是质数还是合数,会把自然数按约数个数进行分类。(三)培养学生观察比较、抽象概括和判断推理的能力。

教学重点和难点

(一)质数、合数的意义。

(二)质数、合数与奇数、偶数的区别。

教学用具

投影片,2~50的自然数表。

教学过程 设计

(一)复习准备

1.判断下面各数,哪些是偶数?哪些是奇数?奇数和偶数是根据什么来分的?(投影片)2,3,4,9,14,15,101,187,235,561,740,927,839,456。

2.按照能否被2整除对自然数进行分类:(投影片)

3.请说出下面各数的所有约数:(投影片出题,学生口答老师板书。)

1的约数有________;2的约数有________;

3的约数有________;4的约数有________;

5的约数有________;6的约数有________;

7的约数有________;8的约数有________;

9的约数有________;10的约数有________;

11的约数有________;12的约数有________。

教师:请观察板书,左边和右边的数各有什么特点?(左边是奇数,右边是偶数。)教师:我们已经学过按照能否被2整除对自然数进行分类。除了这种分法还有没有别的分法呢?这节课就研究这个问题。

(二)学习新课

1.质数、合数的意义。

(1)教师:(指板书)请把1至12各数的约数的个数就出来(学生口答,老师在每列数的后面补出括号,填上数)?

教师:请观察这些数和它们的约数个数,看一看约数的个数有几种情况?

学生口答后老师板书:有三种情况,约数个数是一个,两个,两个以上。

教师:请再举几个数,看一看它们的约数的情况是不是与这几种情况相符合?

学生举例并分析出所举出的数的约数是2个或者两个以上。(小组活动)

(2)教师:请观察只有两个约数的这些数和它们的约数,看看这些约数有什么共同的特点?

学生口答后教师板书出:1和它本身。

教师:如上面这些数,都具有这个特点,我们把它们叫做质数(也叫做素数)。板书:质数。

教师:谁能说一说什么叫质数?

学生口答后老师再把板书补充完整:

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

教师:请观察有两个以上约数的这些数和它们的约数,有什么特点?

在学生口答后,老师逐次板书出:除了1和它本身还有别的约数;合数。

在学生完整地概括什么是合数后板书:

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

教师:的区别是什么?(约数只有两个还是两个以上。)

2.判断一个数是质数还是合数。

(1)(板书)例2,判断下面各数,哪些是质数、哪些是合数(数竖排写)。

17(的约数):1,17(两个)

22(的约数):1,2,11,22(两个以上)

29(的约数):1,29(两个)

35(的约数):1,5,7,35(两个以上)

37(的约数):1,37(两个)

87(的约数):1,3,29,87(两个以上)

教师:根据什么来判断?(检查每个数的约数的个数。)

学生口答,老师在上面各数后面板书出判断过程。

板书:17,29,37是质数

22,35,87是合数。

再请学生说一说怎样判断一个数是否是质数?

教师:一个数有两个以上的约数,判断它是不是质数时,需不需要把它的所有的约数都找出来?(不需要,只要找出第三个约数,就能证明它除了1和本身外还有别的约数。)

口答练习:下面哪些数是质数?哪些数是合数? 19,21,43, 67。

(2)教师:判断一个数是不是质数,除了检查它的约数外,还可以用查质数表的方法来判断。

请学生取出2~50的自然数表。按如下要求去做:先划掉2的倍数,再依次划掉3,5,7的倍数(不包括2,3,5,7本身)看剩下的是什么数?能说明理由吗?

学生书写和讨论,老师巡视。最后说明这就是50以内的质数表。请看课本59页质数表。

练习:请判断下面各数是质数还是合数?并说出自己是如何判断的?(查表或是看约数)

31,57,87,4325,632080。

(3)教师:我们已经认识了质数、合数的区别是它们约数的个数,那么我们能不能按约数的个数这个特点对自然数进行分类呢?分几类呢?

学生讨论中有分两类,三类之争,老师引导从约数个数去看。最后在学生讨论基础上画出集合图:

教师:为什么1要单列一类?

口答后板书:1既不是质数又不是合数。

教师:到此,这节课要研究的自然数的一种新的分类问题已解决了,还认识了质数、合数两个概念。板书引出课题:质数和合数。

3.质数,合数与奇数,偶数的区别。

口答填空:(投影片)在1~20的自然数中,奇数是( );偶数是( );质数是( );合数是( )。

下面几种说法对不对?说明理由。

①质数都是奇数;

②合数都是奇数;

③除2以外的偶数都是合数;

④自然数除了质数就是合数;

⑤自然数除了奇数就是偶数。

请再说一说奇数、偶数与质数,合数的区别。

(三)巩固反馈

1.口答:(投影片)

①在19,29,39,77,84,91中( )是质数;

②合数最少有( )个约数,最小的质数是( ),最小的合数是( ),最小的奇数是( )。

2.“一个数有1和它本身两个约数,这样的数叫做质数。”这句话对不对?为什么?

(四)课堂总结和课后作业 

什么是质数?什么是合数?

按约数个数对自然数进行分类。

质数、合数与奇数,偶数的区别。

作业 :课本P62练习十三,1,2,3,4。

课堂教学设计说明

本节内容是在学生已掌握了约数、倍数、奇数、偶数的基础上,新引进质数、合数两个新概念。教学从研究根据约数个数对自然数进行分类入手,这个分类与已学过的奇数、偶数分类容易混淆,所以设计复习提问和新课教学共用一组板书,这样给学生创造了一个便于比较的视觉效果,(奇数、偶数可以混合排列,也可以左右排列,前者观察与比较难度比后者大,这可以根据班级情况自行选定)。通过比较,学生清楚地认识到质数,合数以及1的区别在于约数个数的多少,同时使学生分清了质数、合数与奇数、偶数的本质区别是对自然数采用了不同标准的分类,这样在学生头脑中建立了清晰的概念,在应用中既不会分类时把1划错范围或遗忘,也不会把质数、合数与奇数,偶数混为一体。

质数、合数概念的归纳,设计中是引导学生从观察入手,抓住关键词,逐层进行的,这样有利于学生概括,归纳能力的培养。

新课教学分三部分。

第一部分教学质数,合数的意义。

第二部分学习判断一个数是不是质数的方法。

第三部分是区别质数、合数与奇数,偶数。

板书设计 

221381