算术平方根教学设计汇总4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“算术平方根教学设计汇总4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《平方根》教案【第一篇】

学习目标:

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

学习重点:

了解平方根的概念,求某些非负数的平方根

学习难点:

了解被开方数的非负性;

学习过程:

一、 学习准备

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32 = ( ) ( )2 = 9

(—3)2= ( ) ( )2 =

( )2= ( ) ( )2 = 0

( )2 =( )

02 =( ) ( )2 = —4

3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与 互为逆运算

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数 有两个平方根,它们互为相反数;

零 有一个平方根,它是零本身;

负数 没有平方根。

交流:(1) 的平方根是什么?

(2)的平方根是什么?

(3)0的平方根是什么?

(4)—9的平方根是什么?

5、平方根的表示方法

一个正数a有两个平方根,它们互为相反数。

正数a的`正的平方根,记作

正数a的负的平方根,记作

这两个平方根合在一起记作

如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数

这里的a表示什么样的数? a是非负数

二、合作探究

1、判断下面的说法是否正确:

1)—5是25的平方根; ( )

2)25的平方根是—5; ( )

3)0的平方根是0 ( )

4)1的平方根是1 ( )

5)(—3)2的平方根是—3 ( )

6) —32的平方根是—3 ( )

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

(1) (2) (3) —100 (4) (—4)2

(5) (6) (7) 10 (8) 5

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)12 , 144 ( ) (2) , ( )

(3)102 ,104 ( ) (4)14 ,256 ( )

2、选择题(1) 的平方根是 ( )

A、 B、 C、 D、

(2)因为()2 = 所以( )

A、 是 的平方根。 B、是的3倍。

C、 是 的平方根。 D、不是的平方根。

3、判断下列说法是否正确:

(1)—9的平方根是—3; ( )

(2)49的平方根是7 ; ( )

(3)(—2)2的平方根是 ( )

(4)—1 是 1的平方根; ( )

(5)若X2 = 16 则X = 4 ( )

(6)7的平方根是49。 ( )

4、求下列各数的平方根

1)81 2)0。25 3) 4)(—6)2

5、求下列各式中的x:

(1) x=16 (2) x= (3) x=15 (4) 4x=81

思维拓展:

1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是

2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。

4、一个数x的平方根等于m+1和m—3,则m= 。x= 。

5、若|a—9|+(b—4)=0,则ab的平方根是 。

6、熟背1至20的平方的结果。

7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?

教学目标:【第二篇】

知识与技能目标:

1、知道平方根的概念,能熟练地求出一个正数的平方根。

2、能描述平方根的特征,理解开方与乘方两者之间的联系与区别。

过程与方法目标:

让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。

情感与态度目(差异网★)标:

1、学生积极参与数学活动,培养其对数学的好奇心与求知欲。

2、过数学活动,使学生获得成功的体验,并形成实事求是的态度。

教学重点:【第三篇】

算术平方根的概念。

导入新课:【第四篇】

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = 。

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的。意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)

22 94118
");