2024年《比例的意义》教学设计精编5篇

网友 分享 时间:

【导言】此例“2024年《比例的意义》教学设计精编5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

比例的意义1

教学内容:教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重、难点:理解比例的意义,能正确判断两个比能否组成比例;在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

教学准备:教学光盘及多媒体设备、两张照片

教学过程:

一、复习导入

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

3、化简比:

12:4 8:18

4、求下面比的比值:

12:4 8:18 : :4

说说求比的比值、化简比的方法

二、教学比例的意义。

1、教学例3

(1)观察、分析:呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

(3)明确概念:这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

:4=:6 /4=/6

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

你能根据以上的理解,再写出两个比,并将它们组成比例吗?说出为什么能组成比例。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)

三、巩固练习

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题

(1)弄懂什么是“《山草香·》相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:从12的因数中任意选出4个数,再组成两个比例式:

( )︰( )= ( )︰( )

( )︰( )= ( )︰( )

五、全课小结

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业

补充习题的相应练习

板书设计:

比例的意义

:4= :6=

:4=:6 /4=/6

表示两个比相等的式子叫做比例。

10:12和25:30

因为10:12=5/6 25:30=5/6

所以10:12和25:30能组成比例:10:12=25:30

课前思考:

教材借助例题3中两张不同尺寸的照片的长与宽,来组织学生先思考放大前照片的长和宽的比,接着写出放大后的照片的长和宽的笔,然后探究这两个比有什么关系,最后揭示比例的概念。这一环节处理结束后,教材又提供了这样一个问题的探讨:分别写出照片放大后和放大前长的比和宽的比,这两个比能组成比例吗?面对这些问题可能很多学生被搞得有点头晕了。在分析了教材和学生学习情况后,我想能否在这里做一些改动,让课堂适当开放些,如出示了例题3的两张照片后,提问:同学们你能写出几个不同的比吗?然后四人一组进行讨论,看看这些比有什么特点,能否有所发现。在学生交流的过程中,教师很自然地引出比例的意义。

课前思考:

比例的意义是传统内容,教材上还是承接第一课时中的放大与缩小来得到两组比例。在教学方法上我还是比较倾向于采用潘老师的方法。分两次提问,每次提问后可让学生说说要我们写什么与什么的比?等学生弄明白要求后再写。如果放开,写比估计学生是可以得到的,但对这4个比的处理要复杂了。

第二,在比例的导入中,潘老师的设计是:

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

我觉得上面的提问指向不明确,学生可能很难想到,是否改为:这两个比相等吗?你有什么办法证明?

第三:为了节省时间,是否可以将化简比与求比值的数据换用练一练中的题目,这样学生可直接根据复习中的结果进行判断。

比例的意义和基本性质及教学教案2

教材分析:

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导学生根据图中的数据写出不同的比例,以其中一个比例为例教学比例各项的名称,在让学生说出其他几个比例的内项和外项。在观察各个比例中的内项和外项的基础上,发展规律,揭示比例的基本性质。教材还介绍了分数形式的比例基本性质的表达方法。“试一试”教学利用比例的基本性质判断两个比能否组成比例的方法。“练一练”和练习十第1-4题对所学知识进行巩固。

设计思路:

传统的课堂教学,学生面对的都是些经过人类长期积淀和锤炼的间接经验。由于教学大纲规定,许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。

从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知”。

基于以上认识,我教学时注意了以下几点:

1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。

在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。

2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。

整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。

3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。

4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。

叶澜教授曾说:“把课堂还给学生,让课堂焕发生命活力”,确实我们教师应该把课堂看作是学生演绎精彩生命的舞台,把主动权、选择权下放给学生,让学生去思考、去探索、去实践,才能激起学生的求知欲望,才会有层出不穷的生成,使课堂充满生命的活力。

教学反思

“比例的意义和基本性质”这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的准备。从学生已有的知识经验入手,方便快捷,为新课做好准备。激发学生的学习兴趣和求知欲望,使学生在探索中学习。然后在教学比例的基本性质时,我让学生看书自学,再小组交流,这样符合“新课标”的要求,体现了教师的主导作用和学生的主体地位。本节课的学习方式是多样的,有观察比较、小组交流、师生交流、同位交流、多方验证。另外,为了培养学生的能力,我采用了自主观察与讨论相结合的教学方式,而且整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完课之后,我发现还存在很多问题。

1、教师激励性的语言还欠缺,还不能用多种语言来激励学生。如果感情更深些,更能激起学生的学习兴趣,使他们能更好的参参与学习。

2、上课心态、情绪还不够平稳,计算机技能、教学机智、自身素养还有待提高。为促进教学目标的顺利完成最后有点赶时间。

3、面对一些即时生成的课程资源,我还不能及时抓彩,把这些有效的教学资源开发、放大,让它临场闪光,从而激发学生参与课堂的热情,让“死”的知识活起来,让“静”的课堂动起来,变单纯的“传递”与“接受”为积极主动的“发展”与“建构” 。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。作为一名教师,在今后的日子里,还要好好努力,在实践中不断完善自己的教学方法。

比例的意义3

教学内容:教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重、难点:理解比例的意义,能正确判断两个比能否组成比例;在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

教学准备:教学光盘及多媒体设备、两张照片

教学过程:

一、复习导入

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

3、化简比:

12:4        8:18

4、求下面比的比值:

12:4        8:18         :        :4

说说求比的比值、化简比的方法

二、教学比例的意义。

1、教学例3

(1)观察、分析:呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

(3)明确概念:这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

:4=:6           /4=/6

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

你能根据以上的理解,再写出两个比,并将它们组成比例吗?说出为什么能组成比例。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)

三、巩固练习

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题

(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:从12的因数中任意选出4个数,再组成两个比例式:

(   )︰(   )= (   )︰(   )

(   )︰(   )= (   )︰(   )

五、全课小结

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业

补充习题的相应练习

板书设计:

比例的意义

:4=       :6=

:4=:6     /4=/6

表示两个比相等的式子叫做比例。

10:12和25:30

因为10:12=5/6    25:30=5/6

所以10:12和25:30能组成比例:10:12=25:30

课前思考:

教材借助例题3中两张不同尺寸的照片的长与宽,来组织学生先思考放大前照片的长和宽的比,接着写出放大后的照片的长和宽的笔,然后探究这两个比有什么关系,最后揭示比例的概念。这一环节处理结束后,教材又提供了这样一个问题的探讨:分别写出照片放大后和放大前长的比和宽的比,这两个比能组成比例吗?面对这些问题可能很多学生被搞得有点头晕了。在分析了教材和学生学习情况后,我想能否在这里做一些改动,让课堂适当开放些,如出示了例题3的两张照片后,提问:同学们你能写出几个不同的比吗?然后四人一组进行讨论,看看这些比有什么特点,能否有所发现。在学生交流的过程中,教师很自然地引出比例的意义。

课前思考:

比例的意义是传统内容,教材上还是承接第一课时中的放大与缩小来得到两组比例。在教学方法上我还是比较倾向于采用潘老师的方法。分两次提问,每次提问后可让学生说说要我们写什么与什么的比?等学生弄明白要求后再写。如果放开,写比估计学生是可以得到的,但对这4个比的处理要复杂了。

第二,在比例的导入中,潘老师的设计是:

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

我觉得上面的提问指向不明确,学生可能很难想到,是否改为:这两个比相等吗?你有什么办法证明?

第三:为了节省时间,是否可以将化简比与求比值的数据换用练一练中的题目,这样学生可直接根据复习中的结果进行判断。

课前思考:

和高老师一样,我觉得求比值和化简比可以采用练一练中的题目,一方面是可以节省时间,另一方面是由于求比值和化简比是上学期学过的内容,有一部分学习困难生肯定遗忘了。整数比学生都会化简,小数比和分数比需要和学生强调一下。练一练中正好安排了小数、分数、整数求比值。

在练习的过程中应该和学生强调,如果要写出两个数之间的比,特别是填空题,一定要是一个最简整数比。

练习第7题,相对应的两个量可以让学生谈谈对这话的理解,然后教师再指出什么是相对应的量。

课后反思:

因为曾经教过以前的教材,所以感觉这一课的学习内容对于学生来说应该不存在太大的问题,教学时应在理解比例的意义和应用比例的意义判断两个比能否组成比例这两个教学重点处多花时间,多从学生角度来设计教学。

结果实际教学时,我遗漏了一个环节即复习比值和化简比,所以课堂上有些学生在判断两个比能否组成比例时花费的时间较多。新授部分,我在出示了例题3的图片后,就让学生根据已知的一些信息写出不同的比,然后计算一下这些比的比值,再谈论一下这些比又什么特点。学生们基本都能写出不同的比并计算出比值,然后发现其中有些比的比值是相等的。这时,我就顺势向学生介绍了比例。这一部分的教学比较顺利,紧接着就处理了后面的练习。教材安排的练习较多,第7题还未详细讲评下课铃声就响了。所以学生在完成作业中类似第7题的时候,还是存在一些困难。现在想来,在教学例题3时,我应该就渗透“相对应的量”,让学生理解那些数量是相对应的,这样就会避免在出现很多数量时不知道该如何入手。

课后反思:

比例的意义这课其实很好掌握,判断两个比是否成比例,其实只要判断这两个比的比值是否相等或者说是最简整数比是否相等。从学生课上的反馈来说,掌握得不错,可一到写作业的时候,总有格式上的错误或者是书写语言上的不完整。

正如高老师所说,在一个班级教授例题的时候,当我提问这两个比有什么关系时?学生是一脸茫然,不能说到点上,但在另一个班级我提问;这两个比相等吗?怎么样来证明?马上有学生提出把他们化简成最简整数比来比较。不同的问法得到了不同的效果,看来,教师的语言组织在课堂上对学生很有影响力,话不在多,而在精练、精准。这也使我有了一定的思考:平时课堂上我的语言其实很罗嗦、很贫乏,一直怕学生记不住,一再的强调和重复。这或许也是学生提不起学习兴趣的原因,是该好好反思一下了。

课后反思:

在学习比例意义时,在学生充分感知的基础上,揭示比例的意义。在此同时要使学生在学习过程中,理解比值相等时才能组成比例,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解让学生进行判断和自己写比例。最后还增加观察比较:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。

课后反思:

因为从放大照片导入,学生还是能比较容易理解找相对应的边的比,例题中可以找到很多组比,并理解它们的比值相等才能确保不变形,所以学生比较容易理解比例的意义。在掌握了比例的基本性质后,学习判断两个比是否成比例,学生的思路基本正确,但书写格式不规范,还需强调。并要引导学生体会用比较清晰的表达方式来表示思考过程。

《比例的意义》教案4

学情分析

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点和难点

教学重点:认识反比例关系的意义。

教学难点 :掌握成反比例量的变化规律及其特征。

教学过程一、复习导入

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

点名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

(板书:每袋重量和袋数的积一定)

乘积8000是什么数量,这种数量关系用式子怎样表示?

[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?

像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

问:两种相关联的量成不成反比例的关键是什么?

(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?板书:x×y=k(一定)指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

三、巩固练习

1. 做“练一练”第l,2,3,4,5题。

指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

2.拓展应用。

3.综合练习

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

《比例的意义》教案5

教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、复习旧知

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括反比例的意义。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?板书:x×y=k(一定)指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例6。

出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?板书;每本的页数×本数=纸的总页数(一定)请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做“练一练”第l题。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.做“练一练”第2题。

指名口答,说说理由。思考时可以引导看数量关系式。

3.做练习八第5题。

让学生先在书上判断。指名口答,要求说出数量关系式判断。

4.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

5.做练习八第6题。

各人先在书上写各成什么比例。指名口答,要求说明理由。

6.做练习八第7题。

先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习八第7题。

22 1843387
");