乘法结合律教学设计精编3篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“乘法结合律教学设计精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

乘法结合律教学设计1

老师通过乘法结合律教学设计让学生经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。这就表明达到了教学目标。以下是乘法结合律教学设计,以供参考!

教学目标:

1、使学生理解和掌握乘法结合律,初步体验乘法结合律的应用。

2、通过乘法结合律公式的推导教学,培养学生思维能力,及科学的学习方法。

3、培养学生的分析、比较、综合能力以及初步的抽象概括能力。

4、通过学生的自主学习,激发学生学习数学的兴趣。

5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。

教学重点:

引导学生概括出乘法结合律,初步体验乘法结合律的应用。

教学难点:

乘法结合律的推导过程是学习的难点。

教学过程:

一、复习准备,引入问题情境

请同学们做口算题。

2×550×225×48×12540×25

通过刚才的口算题,你们很快算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

根据同学的回答总结出:5和2是一对好朋友,它们相乘等于十;25和4是好朋友,它们相乘等于一百;125和8是好朋友,它们相乘等于一千。

教师板书:5×225×4125×8

请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助。

二、学习新课

1、出示主题图。

师:同学们,要保护我们的家园,就要植树造林,绿化环境。

2、引导学生观察:图上的同学们在干什么?上节课我们根据这副图的信息提出四个问题,已经解决了两个问题,今天我们一起解决第三个问题。

板书:一共要浇多少桶水?

师:要解决这个问题,要知道哪几个信息?

3、小组合作,列出综合式。

学生做完后说出自己是怎么想的。(一种思路是先求一共种多少棵树,再求一共浇多少桶水;另一种思路是先求一组浇多少桶水,再求25组一共浇多少桶水。)

板书:25×5×225×(5×2)

=125×2=25×10

=250(桶)=250(桶)

答:一共要浇250桶水。

4、讨论、比较。

提问:

(1)这两个算式都有道理,而且它们的结果是相同的,说明这两个算式之间有什么关系?(是相等关系。)

板书:25×5×2=25×(5×2)

(2)等号左边和右边的算式有什么相同的地方?

议论后得出:等式两边算式中的3个因数一样,都是25,5和2;它们的运算符号是一样的,都是乘号。

(3)那它们有什么不相同的地方?

它们的运算顺序不一样,左边算式要把前2个数相乘,右边算式因为有小括号,所以要先算后边小括号里面的。

(4)哪个算式计算起来更简便呢?

师概括并启发提问:

这两个算式因数相同,运算顺序不一样,但结果都是相同的,这种现象是不是偶然的呢?

5、你能再举出几个这样的例子吗?如:

3×6×5=3×(6×5)

7×4×20=7×(20×4)

25×8×4=25×(8×4)

启发提问:

(1)这三个等式中,每组等式的因数一样吗?(一样的)

(2)它们的运算顺序一样吗?(不一样的)

(3)三个等式左边的算式的运算顺序是怎样的?

议论后明确:三个等式左边的算式运算顺序是一样的,都是把前两个数先乘,再与第三个数相乘。

(4)三个等式右边的算式运算顺序是怎样的?

议论后得出:三个等式右边算式的运算顺序是一样的,都是先把后两个数相乘,再同第一个数相乘。

(5)它们每个等式左右两边运算顺序不一样,但它们的积呢?(积是一样的)

师概括:通过刚才的计算、讨论,看来咱们发现的现象不是偶然的,是有规律性的。

6、引导学生总结规律。

咱们再观察一下,在乘法中,三个数相乘,可以怎么算?还可以怎么算?

学生议论。在充分发表意见的基础上,概括并板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

板书课题:乘法结合律

7、用字母公式表示定律。

启发学生如果用a,b,c分别表示三个因数,乘法结合律的字母公式是什么?

板书:(a×b)×c=a×(b×c)

师概括:我们学习了乘法交换律,可以改变乘法中的两个因数的位置,今天我们学习乘法结合律可以改变乘法运算当中的运算顺序,它们的积都是不变的。

8、看教科书,讨论小精灵提出的问题。

9、乘法结合律的应用。

计算43×25×425×43×4

先让同学独立计算,然后讨论,明确应用了什么运算定律。

10、练一练

完成35页下面的“做一做”的第二题,请生板演,做完后集体订正。

三、巩固练习

1、练习六第2题。

2、用简便方法计算。

42×125×825×17×4(25×125)×(8×4)

以上就是差异网为大家带来的3篇《乘法结合律教学设计》,能够帮助到您,是差异网最开心的事情。

乘法结合律教学设计2

教学目标:

1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2、使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程:

一、复习旧知、导入新课

1、出示:

你能在下列的内填上合适的数吗?

28+320=320+;

(27+138)+62=27+(+);

35+=+35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2、出示:

在下列○内填上合适的运算符号。

4○10=10○4(2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3、导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。

二、举例验证探索规律

(一)探索乘法交换律。

1、情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

板书:3×5=5×3。

说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。

2、举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3、总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。

4、回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。

(二)探索乘法结合律。

1、初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

2、引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5×3)×4=5×(3×4)。

3、举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4、总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(a×b)×c=a×(b×c)。

说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。

三、尝试运用理解规律

1、做“想想做做”第1题。(略)

2、尝试简便运算。

谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

出示第62页的“试一试”,学生尝试简便运算。

指名学生板演。

评讲:你能说出计算时运用了乘法的什么运算律吗。

小结。(略)

说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。

四、巩固练习拓展提高

1、做“想做做做”第2题。

观察:你发现每一组题的上、下两道算式有什么联系?

谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

提问:你能说出算得又对又快的理由吗?

说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。

2、做“想想做做”第3题。

谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

组织交流。

3、用简便方法计算。

25×6×4×1525×125×32

学生练习后,组织交流。

五、引发联想,鼓励探究

谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

127—53—27218—69—31

127—27—53218—(69+31)

72÷3÷854÷3÷2

72÷8÷354÷(3×2)

说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。

乘法结合律教学设计3

一、教学内容

北师大版教材四年级上册第三单元中的《探索与发现(二)》。

二、教学目标

1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

2、在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。

3、感受数学探索的乐趣,培养自主探究问题的能力。

三、教学重、难点

1、重点:探索、发现、理解和应用乘法结合律和交换律。

2、难点:乘法结合律和交换律的探索过程。

四、教具准备

一些小长方体

五、教学过程

(一)口算比赛,激发学习兴趣

1、出示口算题

2×55×1425×4125×836×25

2、谈话引入

师:他们怎么计算那么快呀?是不是有什么规律呢?这节课我们就一起来探索发现吧!

3、板书课题。

(二)创设情境,发现问题

1、动手操作

师生共同用小长方体搭一个和教材上一样的。大长方体。

2、估一估

师:请大家认真观察,估一估这个长方体是由多少个小长方体搭成的?

学生独立观察,思考后集体交流。

3、算一算

师:谁估计的准确呢?请同学们在本子上算一算。

学生独立思考,计算。

4、交流算法

师:谁愿意把你的办法介绍给大家?

学生汇报,师板书:(3×5)×4=603×(5×4)=60

5、比一比

师:比较这两个算式,你发现了什么?

生:…

(三)提出假设,举例验证

1、提出假设

师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

2、学生举例

小组内互相交流,教师巡视指导。

3、集体交流

师:谁愿意介绍一下你们小组举例的情况?

生:…

(四)概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。那么从中你能发现乘法运算中的规律吗?

学生同桌交流后反馈。

师:这样的例子多不多?(多)能举完吗?(不能)

师:那么我们就用字母a、b、c分别表示乘法算式中的任意三个数字,你能写出这个规律吗?

生:…

生说师板书:(a×b)×c=a×(b×c)叫做乘法结合律

(五)运用规律,解决问题

1、比较(3×5)×4=603×(5×4)=60两个算式的计算过程,哪个更简便?

师:看来运用乘法结合律可以使一些计算简便。

2、出示38×25×4

师:能用乘法结合律使这道题计算简便吗?

学生试做,教师指导。

3、独立计算:42×125×8

(六)探索乘法交换律

1、出示一组数据

4×5=5×412×10=10×126×7=7×6

师:认真观察,你发现了什么?

生:…

2、学生举例验证,发现规律

3、用字母来表示,生说师板书:a×b=b×a

(七)运用模型,完成练习

1、“练一练”第1题。

学生独立做题后集体交流。

2、“练一练”第2题。

学生独立做题后展示评比。

(八)课堂小结

师:这节课你有什么收获?

学生自由发言。

22 493630
");