北师大版六年级上册《圆的面积》教学设计(优质4篇)

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“北师大版六年级上册《圆的面积》教学设计(优质4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《圆的面积》教学设计【第一篇】

本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。

1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的*,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

《圆的面积》教学设计【第二篇】

教学目的

1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的 计算 公式;

2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

教学重点 :圆面积计算

教学难点 :公式以及推导。

教学过程

一、复习并引入课题。

1.口算:2π ÷π ÷π

2.已知圆的半径是分米,它的周长是多少?

3.一个长方形的长是 米,宽是 4米,它的面积是多少?

4.说出平行四边形的面积公式是怎样推导出来的?

5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

二、新课讲授

1.圆的面积的含义。

问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图) 问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

强调:如果分的等份越多所拼的图形就越接近长方形。

问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

学生独立完成圆面积公式的推导:

总结:我们用S表示圆的面积,那么圆面积的大小就是: 再次强调:

(1)拼成的图形近似于什么图形?

(2)原来圆的面积与这个长方形的面积是否相等?

(3)长方形的长相当于圆的哪部分的长?

(4)长方形的宽是圆的哪部分?

(5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

3.圆面积公式的应用。

师:我们回头看刚才的问题,圆形花坛的直径是 20m,这个花坛占地多少平方米?

学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

(学生独立完成,教师巡视,对有困难的学生给予辅导。) 教师板演计算过程。

出示例2:光盘的银色部分是一个圆环,内圆半径是 2cm,外圆半径是cm,它的面积是多少?

问题:你能利用内圆好外圆的面积求出环形的面积吗?

学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

回答问题,在黑板上演示计算方法,集体纠错。)

三、巩固练习。

1.根据下面所给的条件,求圆的面积。

半径2分米。

直径 10厘米。

(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

(2)强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

四、课堂小结

总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

另外,我们在前面也学习了如何求圆的周长,需要注意的是:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。 板书

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr

《圆的面积》教学设计【第三篇】

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3.教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4.教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转*器?

(2)想象一下自动*器旋转一周后喷灌的地方是什么图形,*的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5.教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2.完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3.完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4.完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5.作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积=

《圆的面积》教学设计【第四篇】

教学内容:

圆的面积。

教学目标:

1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

学情分析:

本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

学法指导:

教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

教具准备:

多媒体课件,圆片。

学具准备:

把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

教学设计:

一、复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr × r S=πr2 师小结公式

S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

三、运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示

用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的面积即圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

1. 第97页的第3题和第4题。

2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

板书设计:

圆的面积

长方形的面积= 长× 宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

22 565276
");