数学周长教学设计精编5篇

网友 分享 时间:

【前言导读】此篇优秀范文“数学周长教学设计精编5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

周长教学设计1

教学内容:《义务教育课程标准实验教科书 数学(三年级上册)》第41页的内容。

教学目的

1. 通过说一说、摸一摸等活动使学生理解、掌握周长的概念。

2. 通过实践操作,探究周长测量策略,培养学生动手操作能力及概括能力。

3. 培养学生合作探究能力。

教学重点

使学生建立周长的概念。

教学难点

引导学生探究周长的测量策略。

教学过程

(展示各图形)

说说是什么图形,好看吗?

老师想将这些图形制作成小相框,有同学建议将这些图形用各色彩带镶上边,让小相框更美丽。

制作中遇到问题:每个图形要多少镶边材料呢?多了浪费,少了不好看。先测知边长(周长),再剪材料。

量哪儿好呢?请指一指。(一生上台指,其他书空。)

强调:看清从哪开始,绕边一周,回到起点,头尾相接,手指要紧贴图形边缘。

二、探究新知

1. 建立“周长”概念。

(1)今天咱们的课堂来了一位数学王国的朋友──周长。

(板书:周长)

“周长”朋友的名字里体现了他的特点。

谁认识这位朋友?请给大家介绍一下。

(学生介绍)

看看书本怎么介绍的,课本p41,读一读。

“封闭图形一周的长度,是它的周长。”

通过书本和同学的介绍你了解“周长”这个朋友吗?

(2)质疑“封闭”。(学生解答:头尾相接。)

小结:所有线段、曲线首尾相接才是封闭图形。

看看这组图形,都封闭了吗?那些图形我们能计算它的周长?

[补充:一个一边余出的正方形,让学生判断。引导学生正确认识,每条线首位相接,围成的才识封闭图形,否则不能求出正确的周长]

2. 实物的周长。

(1)“周长”朋友就在我们身边。

a钟面的周长在哪?指一指,摸一摸。

b圆柱盒底面的周长在哪?……(不能说盒子的周长,强调“面”。)

c树叶的叶面

d红领巾的面

(2)活动“找周长”。

从身边找“周长”朋友,并摸一摸,同组伙伴说一说。

(3)活动汇报。

3. 周长测量策略探究。

(1)回到引入图形。

这些图形的周长在哪儿?

所镶边的长度,就是图形的周长。

有办法知道上面这些图形的周长吗?

(简说什么方法,工具。)

[通过活动前的思考,让学生初步形成选择的策略,如测量月亮和心形等可以借助绳子,而测量正方形等可直接用支持测量]

(2)想亲自量一量周长吗?

每个小组的信封里都有这些图形,还有绳子,待会儿除了用绳,你还可以用尺子或别的工具进行测量,咱们要比一比哪一组的测量方法多。完成后请组长表格记录结果。

[学生在选择合适的工具时,拿着正方形等也都选用绳子,但是我准备的图形卡片较小,而线较软,在测量的时候并不好操作,而且误差也大。这也不是我的初衷,分析原因:其一,对与绳子测量,学生是第一次使用,充满了好奇,当看到绳子的时候,就忘了还有直尺这个工具;其二,学生认为用绳子只用测量一次(围一圈),而直尺却需要量四次。可喜的是,学生还是能判断出图形各边间的关系再测量,如长方形只用测量2条边,正方形测量1条边,心形测量半边,五角兴只用测一条边等]

(3)汇报。

方法一:直接尺量,这种量法适用于什么图形周长测量?(线段)

方法二:间接绳量,这种量法适用于什么图形周长测量?(曲线)

方法三:量后计算:这种量法适用于什么图形周长测量?(有重复出现的部分)

……

(4)你还想测量什么物体的周长?(此环节延伸到课外)

测量,记录。

三、总结

(1)这节课学习了什么?

我的思考:作为一节随堂课,我为这一节课准备了充分的学具材料,认为这一堂课是很适合小组分工合作完成的。在匆忙的准备过程中忽略了一些细节,如准备的图形过小,线条太细太软,不便学生测量。如果能把图形都粘在胶板上,那么操作的时候难度会降低很多。在合作测量前,虽然提了诸多要求,希望能培养学生的合作能力,但是自己心情兴奋,课堂节奏快,学生缺少冷静的思考,以致在测量环节中,学生一直拿着绳子无法测量,我还要不停地徘徊在小组间指导。一节课下来,疲惫万分,课前最担忧的状态还是重复出现了。如何引导小组合作,提高合作效率?这是努力尝试着下一次的进步!

《周长》公开课教学设计2

一、教学目标

1、 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2、 培养学生的观察、比较、分析、综合及动手操作能力;

3、 结合圆周率的学习,对学生进行爱国主义教育。

二、教学准备

一元硬币、圆形纸片等实物以及直尺,测量结果记录表

三、教学过程:

<一>、创设情境,引起猜想:

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1、回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2、认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2、 怎样才能知道这个正方形的周长?说说你是怎么想的?

3、 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

(四)讨论圆周长的测量方法

1、讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法:(板书)

化曲为直

4、创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

5、明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)

(五)合理猜想,强化主体:

1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4、小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

<二>、实际动手,发现规律:

(一)分组合作测算

1、明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系

2、生利用学具动手操作,师巡视指导、收集信息。

3、集体反馈数据(选取3~4组实验结果,黑板板书展示)

(二)发现规律,初步认识圆周率

1、看了几组同学的测算结果,你有什么发现?

2、虽然倍数不大一样,但周长大多是直径的几倍?

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3、这个倍数究竟是多少呢?我们来看一段资料。

(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在与之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4、理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5、解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1、 如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长 = 直径× 圆周率

C =πd

2、 如果知道圆的半径,又该怎样计算圆的周长呢

板书:C =2πr

追问:那也就是说,圆的周长总是半径的多少倍

<三>、巩固练习,形成能力

1、判断并说明理由:π = ( )

2、选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a.大圆的圆周率大于小圆的圆周率;

b.大圆的圆周率小于小圆的圆周率;

c.大圆的圆周率等于小圆的圆周率。

3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

<四>、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近

《圆的周长》教学设计3

一、教学目标

(一)知识与技能

理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。

(二)过程与方法

经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。

(三)情感态度和价值观

通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

二、教学重难点

教学重点:理解和掌握圆的周长的计算方法。

教学难点:圆周率的探究。

三、教学准备

多媒体课件。

四、教学过程

(一)创设情境,引发思考

1.情境导入,揭示课题。

教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)

学生:给它加一个箍。

教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?

教师:求铁皮的长度,就是求圆的什么?

学生:求铁皮的长度,也就是求圆的周长。

教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)

学生:圆一周的长度叫圆的周长。

教师:圆的周长与我们之前学习过的图形的周长有什么区别?

学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。

2.合理猜想,确定方向。

教师:圆的周长与圆的什么有关?

学生:直径、半径。

教师:圆的周长是直径的几倍?

学生:……

教师:怎么验证你的猜测呢?

学生:量一量,算一算。

设计意图呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。

(二)设计方案,展开探究

1.探讨设计方案。

(1)如何化曲为直?

教师:圆是曲线图形,尺子是直的,怎么办?

学生:滚一滚,绕一绕……

(2)如何减少误差?

教师:测量结果可能不准确,有什么办法尽量准确一点呢?

学生1:多量几次,选出现次数量多的数据。

学生2:用计算器计算,提高正确率。

教师:除不尽怎么办?

学生1:用分数表示。

学生2:取近似数。

教师:一般保留两位小数,比较方便。

设计意图圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。

2.操作获取数据。

小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。

物品名称

周长

直径

周长与直径的比值

(三)交流讨论,提升认识

1.交流质疑。

(1)小组汇报,教师直接将结果输入电脑。

设计意图在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。

(2)质疑不同数据。

教师:为什么测量计算的结果不相同?

学生1:测量有误差,绳子绕的松紧程度不同。

学生2:尺子不够精确,不到一毫米只能估计。

教师:是不是尺子再精确一点,测量结果就准确无误?

教师:有没有其他的方法?

教师:有没有唯一的得数?

设计意图讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。

2.概括小结。

(1)圆周率的意义及读写。(课件出示内容。)

任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈……但在实际应用中常常只取它的近似值,例如≈。

(2)概括周长计算公式。

如果用C表示圆的周长,就有C=d或C=2r。

(四)联系实际,解决问题

1.例题教学。

(1)出示教材第64页例1。

一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?

(2)学生尝试解答。

(3)规范书写。

C=2r

2××33=(cm)≈2(m)

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。

2.巩固练习。

(1)求下面各圆的周长。

①2××3=(cm);

②×6=(cm);

③2××5=(cm)。

(2)解决问题。

①一个圆形喷水池的半径是5 m,它的周长是多少米?

2××5=(米)

答:它的周长是米。

②小红量得一个古代建筑中的大红圆柱的周长是 m。这个圆柱的直径是多少米?(得数保留一位小数。)

÷≈(米)

答:这个圆柱的直径大约是米。

设计意图在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。

(五)课堂小结,拓展延伸

1.这节课你有什么收获?说一说圆的周长与直径的关系。

2.介绍中国古代对圆周率的研究及伟大成就。

设计意图对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。

《圆的周长》教学设计4

一、设计思路

本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。

二、教学过程与设计意图

教学目标:

1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。

2、结合教学内容进行爱国主义教育,激发学生民族自豪感。

3、培养学生大胆猜想、勤于思考、勇于探索的。优良品质。

教学重点:掌握理解圆的周长公式推导过程

教学过程:

A、创设情境·激疑——提出问题

(出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?

(学生思考后师出示有计数器的跳绳作提示)

(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。

(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。

(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。

(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?

设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。

B、师生共同提出假设

(1)请学生回忆正方形周长和边长的关系(边长×4)。

(2)师:能不能求圆周长时也找到这样的倍数关系呢?

(3)师:测量的圆的什么比较方便呢?生答:半径、直径

(4)师:请学生先画几条长短不一的线段作直径画圆

(5)师:观察自己画的圆你发现了什么?

学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系

(6)师:你估计周长是直径的几倍?

学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右

(7)师:你有办法验证吗?学生讨论

演示:用绳绕的方法验证(3倍多一点)

设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。

C、探索问题解决的方法·发现——构建新知

(1)师:你还有别的办法研究圆的周长和直径的关系吗?

(可以用绳绕滚动的办法分别测量一些圆的周长)

(2)学生在小小组内动手操作、测量进行验证

直径(厘米)周长(厘米)周长是直径的几倍

2 3倍多一点

3 3倍多一点

4 3倍多一点

(3)小结

a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率……是一个无限不循环小数,我们在计算时通常取,用字母л表示,(请学生写一写л)

b、结合圆周率进行爱国主义教育

师生共同推导计算圆的周长公式:(C=лd或C=2лr)

D、运用新知识解决数学问题

(1)学生尝试例题求圆的周长

(2)基本练习(略)

设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。

E、评价体验

(1)师:这节课研究了什么?

生1:周长和直径的关系

生2:圆的周长=直径×圆周率,即C=лd或C=2лd

(2)师:(出示一棵古树图片)你能测量它的直径吗?

《圆的周长》教学设计5

微课简介

《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。

教学背景

数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。

教材分析

圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。

学情分析

本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。

教学目标

推导并总结出圆周长的计算公式。

教学重难点

推导出圆周长的计算公式。

教学方法

以引导探究为主的探究法。

学习环境与资源

1、学生分组,每一组至少有一台联网的计算机。

2、探究工具软件《圆的工具》

3、学生探究活动纸

教学过程

这一环节主要是进行实验探究,构建模型。

一、出示实验任务,提出实验要求。

1、把用来记录探究数据的学生活动纸分发给学生。

2、介绍实验软件:圆的工具

3、出示探究活动一的任务:

二、学生应用软件开展数学实验

1、同桌合作,轮流进行操作和记录;

软件使用说明

2、四人小组进一步协作整理数据,发现规律;

学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。

当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”

这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。

3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。

三、建构数学模型

1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。

2、学会按顺利整理数据的实验方法。

教学总结

圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。

22 1553124
");