《质数和合数》精编教学设计【通用4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“《质数和合数》精编教学设计【通用4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《质数和合数》优秀教学设计【第一篇】

教学内容

数的奇偶性(教材第15页例2,以及第16~17页练习四第4~7题)。

教学目标

1、经历探索加减法中数的奇偶性变化的过程,在活动中发现加法中的数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

2、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

重点难点

1、探索并理解数的奇偶性。

2、能应用数的奇偶性分析和解释生活中一些简单问题。

复习导入

同学们喜欢做游戏吗?今天老师就和你们一起来做抽奖游戏。其实在抽奖游戏中蕴含着许多数学规律,今天老师就看谁细心观察,在抽奖游戏中获得数学规律。同学们想要奖品吗?那就要看你们的运气了。

新课讲授

1、探索规律

游戏一:出示盒子,里面装的都是偶数。

游戏规则如下:从盒子中任意取出两张卡片,如果两个数的和是奇数就可以领到精美礼品一份。

(1)如果继续玩下去有中奖的可能吗?什么原因拿不到礼物呢?

(2)总结规律:偶数+偶数=偶数

(3)你能说说为什么吗?(偶数除以2余0,两个偶数相加的和除以2还是余0。所以:偶数+偶数=偶数)

游戏二:出示盒子,里面装的都是奇数

游戏规则如下:从盒子中任意取出两张卡片,如果两个数的和是奇数就可以领到精美礼品一份。

(1)如果继续玩下去有中奖的可能吗?什么原因拿不到礼物呢?

(2)总结规律:奇数+奇数=偶数

(3)你能说说为什么吗?(奇数除以2余1,两个奇数相加的和除以2正好余2。也就是没有余数了,所以:奇数+奇数=偶数)

游戏三:怎样修改游戏规则能得到奖品呢?

(1)两个盒子里各抽出一张卡片,就会中奖。

(2)总结规律:偶数+奇数=奇数

(3)你能说说为什么吗?(奇数除以2余1,偶数除以2余0,一个奇数加一个偶数的和除以2还余1.所以:偶数+奇数=奇数)

2、验证规律

这些卡片都是老师设计好的,仅仅靠卡片上的数,我们就下定论似乎还早了些。我们还需要什么呀?对,还需要进一步的“验证”,那么就请你再自己任意出几个数,验证一下这三种情况吧。验证后把你的结论跟小组同学交流一下。

独立完成后小组交流,并汇报发现的奇偶数规律。(偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数)

生齐读一遍

练一练:不用计算判断下列算式的结果是奇数还是偶数吗?

10389+XX11387+131268+1024

3721+XX22280+10238800-345

课堂作业

完成教材第16~17页练习四第4~7题。

课堂小结通过今天的学习,我们发现数学知识与我们的生活实际是有着非常紧密的联系的。只要我们大家在今后的学习生活中多用眼观察,多用脑去想,更重要的是多用手去做的话。数学知识就非常简单了.

课后作业

完成练习册中本课时练习。

《质数和合数》优秀教学设计【第二篇】

教学目标

一、知识与技能

1、掌握质数和合数的意义。

2、熟记20以内质数,能准确地辩识一个常见自然数是质数还是合数。

3、通过探究质数和合数的意义,培养学生的探究意识和能力。

4、能对现实生活中箱装饮料罐的数字信息作出合理解释。

二、情感、态度与价值观

1、通过实际生活中箱装牛奶的排列方式,感知生活中有数学。

2、在形式多样的练习中,激发学生的学习兴趣。

教具学具

CAI课件、题单1张。

教学过程

一、生活实例引入

1、观察生活:同学们,我们所喝的液体牛奶通常都是排在长方体的纸箱中。

请你们猜猜看:通常一箱牛奶的总数量会是些什么数?

师:真是这样的吗?老师这里带来了一些箱装的牛奶,大家一起来看一看:每箱共有多少盒?是怎样排列的?用算式表示。

教师根据学生的回答板书在黑板的右侧:

24=4×6

15=3×5

12=3×4

2、实际数量的多种排列方法,分析可行性:

这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)板书:

24=4×6=3×8=2×12=1×24

15=3×5=1×15

12=3×4=2×6=1×12

提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(学生回答后教师在黑板上勾一勾。)

为什么?(不便携带……)

3、比较质疑,引入新课:

现在老师这儿有13盒牛奶,如果将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?(学生思考,同桌说一说,教师板书在黑板左侧)板书:

13=1×13

17=1×17

19=1×19

你还能举出一些这样的数吗?

据学生回答板书,同时说明:像的这样的数还有很多。

二、探究新知

(一)探究质数意义。

1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?

四人小组讨论(提示:跟这些数的因数的个数有关。仔细观察左边这些数的因数,你发现了什么?)

汇报:(鼓励学生用自己的语言描述)

CAI整理揭示:只有1和它本身两个因数的数叫质数。

强调:质数只有两个因数。

如:13只有1和13两个因数,17只有1和17两个因数:19也只有1和19两个因数;……所以13、17、19……都最质数。

2、再举几个质数,并说明理由。

3.小组合作:找出自然数1—20中有哪些数是质数?

4.学生汇报并说说是怎么找出来的。(学生汇报后CAI出示)

(二)探究合数。

1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?

除了1和它本身还有别的因数;它们至少有几个因数?(3个)

CAI揭示:除了1和它本身,还有别的因数的数,叫合数。

强调:合数至少有3个因数。

2、请你再举几个合数,并说明理由。

3、巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(因数的个数。)

4.谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数,揭示课题。)

5.小组合作:找出自然数1—20中的合数。

6.学生汇报,老师用CAI出示。

(三)通过观察自然数1—20中的质数和合数,引出“1”:

1、刚才我们用找因数个数的方法,找到了自然数1—20中的质数有多少个?(8个)合数有多少个?(11个)一共有多少个?(19个)还漏掉了哪个数呢?(1)

2、提问:1是质数吗?是合数吗?为什么?

学生充分发表意见后CAI揭示:1只有一个因数,所以它既不是质数,也不是合数。

(四)指导学生看书,勾画重点句。

三、发展练习:CAI辅助演示指导学生完成题单。

1.是的就在对应的表格中画“√”。

1234567891011121314151617181920

奇数

偶数

质数

合数

2、根据1小题填空

(1)最小的奇数是();

(2)最小的质数是();

(3)最小的合数是();

(4)既是偶数又是质数的只有();

(5)20以内既是奇数又是合数的有()。

3、判断下列说法是否正确。

(1)自然数除了质数以外都是合数。()

《质数和合数》优秀教学设计【第三篇】

教学目标:

1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。

2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力

教学重难点:理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

教学过程:

一、课前谈话

师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,谁能试着用你学过的整除知识描述你的数?

二、教学过程:

(一)情境引入:

(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)

教师提示:(同时演示)比如我的数是40,我就用40个小方格,可以拼出这样的85和58的长方形,别看摆法不同,但属于同一种的

(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。

(3)学生反馈汇报:谁拼得多?还有更多的吗?

生反馈24号4种,并验证

(4)看来24号同学是这次比赛的冠军。是最聪明的,你们同意吗?找个代表说说理由。

(5)验证刚才总结出的结论

(二)揭示质数、合数

(1)为什么这些数只能拼出一种来,这些数有什么共同点

(2)拼出不只一种的都有谁, 为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?

(3)投影概念读一读

(4)研究数字1

揭示:1既不是质数也不是合数(板书)读一读

(5)小练习:现在我可以说自然数中不是质数就是合数,对吗?

三、巩固练习,加深认识。

出示学生表

1、抢答练习:一些数快速判断质数合数

2、判断

3、猜学号认同学

4、自我介绍

2、出示哥德巴赫猜想

四、小结收获

板书设计:

质数合数

只有1和它本身没有其他约数叫质数

除了1和它本身还有其他约数叫合数

《质数和合数》优秀教学设计【第四篇】

教学内容:

质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类、

2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。

教学重点:

能准确判断一个数是质数还是合数、

教学难点:

找出100以内的质数、

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、

3和154和2449和791和13(指 名回答。)

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1--20各数的因数。

1、观察各数因数的个数的特点。

2、填写表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?

6、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

7、小练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?

生:质数,合数,0。

2、说一说

知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

5、小练习:

(1)所有的奇数都是质数吗?

(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。

六、课堂小结。

这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?

22 229358
");