《三角形面积》的教学设计4篇

网友 分享 时间:

【前言导读】此篇优秀范文“《三角形面积》的教学设计4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《三角形面积》说课稿【第一篇】

教学内容:

《探索活动(二)三角形面积》

教学目标:

在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

教学重点:

三角形面积公式的建立;利用分割与旋转进行图形转化

教学难点:

三家形面积公式的概括;利用分割与旋转进行图形转化

教法设计:

教学媒体的准备:

学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。

教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。

教学过程设计:

一、温故孕新,提出问题

⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?

学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式

教师提问:谁能说一说平行四边形面积计算公式的推导过程?

学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。

(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)

⒉教师利用课件出示教材p25主题图

教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。

(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)

⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:

三角形面积

教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。

(设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)

二、观察对比,设想转化

⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,

预计学生可能提出以下两种方案

⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)

⒉教师利用电脑课件再出示一个平行四边形(如右图),

引导学生与三角形进行观察对比,

思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。

(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)

三、动手操作,体验转化

⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)

在转化过程中的三角形和平行四边形有什么关系?

教师引导学生分析思考的含义

⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。

⒊学生汇报探究的成果

预计有以下几种情况:

⑴拼:

①用两个完全相同的三角形拼成一个平行四边形

教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?

完全相同——形状,面积都相等(板书)

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

②通过割补把一个三角形拼成平行四边形

教师提问:为什么选择两条边的中点连线进行分割?

(原因:平行四边形的对边相等)

总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。

教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

⑵剪:将一个平行四边形剪成两个三角形

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?

学生思考,口述,

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)

(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

四、建立公式,实践应用

⒈归纳公式

教师谈话:请同学们打开教材p25,学生阅读教材。

教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上

三角形面积=___________________________

如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:

s=_______________

学生思考,交流,填写,口述,教师板书

三角形面积=底×高÷2;s=ah÷2

⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?

⒊回归问题:

教师谈话:现在我们能求这个三角形的面积了吗?

学生重新审题,独立完成,口述,教师板书

4×3÷2=6(cm2);答:它的面积6cm2。

⒋巩固练习:完成教材p26试一试。

学生独立完成,板演,教师订正

(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)

作业设计:

⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。

⒉完成教材p26练一练第1题。

板书设计:(略)

五年级数学《三角形的面积》教案【第二篇】

教学目标:

1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。

2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。

3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重、难点:

探究三角形面积公式的推导过程。

教学准备:

课件,2个完全一样的钝角、锐角、直角三角形,剪刀。

教学方法:

合作探究

教学过程:

一、谈话导入、揭示课题

同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?

我们已经学过哪些图形的面积?

红领巾是什么形状的?

会求三角形的面积吗?这节课我们就学习三角形的面积。

二、合作探究、汇报交流

1、猜测:

你想用什么方法求三角形的面积?

平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?

用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。

转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?

2、同桌合作动手操作。

用两个同样的钝角三角形拼一拼。展示作品。

3、小组合作。

锐角三角形、直角三角形能拼成学过的图形吗?

同学们想试试吗?根据提示板上的提示研究吧。

提示:

做一做:想办法把三角形转化成学过的图形。

找一找:转化成的图形和原来的图形有什么关系。

想一想:三角形的面积该怎么求呢?

4、学生汇报。

5、归纳小结。

转化后的图形用一个名字概括,哪个比较合适?

三、推导公式

1、回顾

课件演示:两个同样的三角形旋转、平移拼成了平行四边形。

每个三角形与拼成的平行四边形有什么关系?

三角形的底和高与拼成的平行四边形的底和高有什么关系?

2、得出结论

三角形的面积该怎样计算?

为什么要除以2?

三角形的面积计算公式用字母该怎样计算?

3、小结方法

刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。

4、拓展延伸

介绍刘徽用一个三角形推导出了面积公式。

四、运用公式解决问题

1、解决红领巾的问题。

2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。

体会底和高的对应性。

3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?

五、全课总结

同学们,通过这节课的学习,你有收获吗?一起来分享吧!

追问:

三角形的面积为什么要除以2?

怎样推导出三角形的面积计算公式的?

只要大家勤动手、勤思考,就一定能学到更多的数学知识。

板书设计:

三角形的面积

三角形的面积=平行四边形的面积÷2

=底×高÷2

S=ah÷2

角形面积计算数学教案【第三篇】

教学内容:

人教版9册 三角形面积公式推导部分

教学目的:

1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

教学过程:

一、阅读质疑。

先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

1厘米

学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

(1)数方格怎么求三角形的面积?

(2)不数方格怎么求三角形的面积?有没有一个通用公式?

(3)能把三角形也转化成我们学过的图形求面积吗?

(4)转化成的这些图形跟三角形有什么关系吗?

(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)

二、点拨激思

1、数方格的问题

学生根据学习材料可以解答用数方格的方法求三角形的面积。

老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。

(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

2、转化的问题

你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

三、探索解疑

学生操作,讨论,汇报。

1、转化的图形

学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

2、解决转化前后图形间的关系

(1)大小的关系

通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S÷2。一个三角形转化成的图形跟三角形关系是S =S

(2)底和高的关系

拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2

师:思路真清晰,为什么÷2,谁还想说。

(学生依次讲拼成的长方形,正方形这两种情况)

(3)公式推导

师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

生:底×高÷2

师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

生:S=a×h÷2

(4)推导拓展

师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2

师:这个方法怎样,谁来评价一下。学生评价,太棒了。

生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2

(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

归纳小结

出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

总析:本节课有以下两个特点

1、充分体现了“问题意识的培养”。

老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

2、重视研究问题的过程。

这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

五年级数学《三角形的面积》教案【第四篇】

一、复习旧知

1、说说长方形、正方形、平行四边形的面积计算公式?

2、计算下面长方形和平行四边形面积。

二、小组合作、探究三角形面积的计算

1、用自制三角形拼成我们学过的图形。(小组代表在展台上展示)

我们发现:两个完全一样的三角形可以拼成()、()、()图形。

思考:每个三角形面积是拼成后的`图形面积的()。

三角形的底和高与拼成后图形有什么关系?

结论:两个完全一样的三角形可以拼成一个与它()的平形四边形。

2、根据实验证明:

两个完全一样的三角形可以拼成一个平行四边形。

这个平行四边形的底等于三角形的()

这个平行四边形的高等于三角形的()

每个三角形的面积是拼成的和它()的平行四边形面积的()。

因为平行四边形的面积=______________

所以三角形的面积=_______________用字母表示____________

从公式中发现要求三角形的面积必须需要知道哪些条件?

三、量出红领巾的底和高算出它的面积。

22 27837
");