三角形面积的教学设计(4篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“三角形面积的教学设计(4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

角形的面积教学设计【第一篇】

学习内容:

第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。

学习目标:

1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

学习重点:

理解并掌握三角形面积的计算公式

学习难点:

理解三角形面积公式的推导过程

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、出示一个底是4分米,高是3分米的平行四边形。

这是一个什么图形?它的面积如何计算?

■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。

二.交流共享

■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。

板块一学习例4:

仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?

先自己想,随后在小组中交流。

你是怎样求出每个涂色的三角形的面积?

三角形与平行四边形究竟有怎样的'关系?

三角形的面积应当如何计算?

板块二学习例5:

(1)出示例5:

用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个三角形有什么特点?

(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

小组交流:如何计算一个三角形的面积?

从表中可以看出三角形与拼成的平行四边形还有怎样的关系?

得出以下结论:

这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=

(4)用字母表示三角形面积公式:

三、反馈完善

1、完成试一试:

2、完成练一练:

(1)先回忆拼得过程,再回答。(2)你是如何想的。

3.判断。

(1)两个形状一样的三角形,可以拼成一个平行四边形。……

(2)平行四边形面积一定比三角形面积大。……

(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍。………

(4)底和高都是厘米的三角形,面积是平方厘米…….

4.完成课本第17页第6题。

5、拓展练习

量出你的三角板(两个任选一个)的底和高,然后算出它的面积。

6、课外延伸:阅读第16页“你知道吗”

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

角形的面积教学设计【第二篇】

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

[设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。]

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。]

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

[设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。]

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是米,它的面积是多少?

学生试做后,反馈、评讲。

[设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。]

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:厘米 ④a:20分米,h:分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

[设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。]

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

×4÷2 ×4÷2

×9÷2 ×4

②求右图面积的算式是( )。

×÷2

×÷2

× ×÷2

③求下图面积的算式是( )。

×20 ×25

×20 ×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

[设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。]

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

[设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。]

五、布置作业。

角形的面积教学设计【第三篇】

一、教学目标

(一)知识与技能

让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

二、教学重难点

教学重点:探索并掌握三角形面积计算公式。

教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。

三、教学准备

多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。

四、教学过程

(一)复习铺垫,激趣引新

1.复习旧知。

(1)计算下面各图形的面积。(PPT课件演示)

(2)创设情境。

同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?

2.回顾引新。

(1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?

(2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)

(二)主动探索,推导公式

1.操作转化。

(1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?

(2)请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:

你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

学生分组操作,教师巡视指导。

(3)学生展示汇报。

预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。

预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。

预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。

(4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?

学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。

2.观察思考。

(1)观察拼成的平行四边形和原来的三角形,你发现了什么?

(2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。

3.概括公式。

(1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)

(2)总结公式。

①板书公式:三角形的面积=底×高÷2。

②用字母表示三角形面积计算公式。(PPT课件演示)

(3)回顾与小结。

①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?

②教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的'方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。

4.除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。

(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?

(2)交流汇报(请学生展示剪拼过程)

平行四边形的面积=底×高

↓↓

(三角形的面积)(三角形的底)(三角形高的一半)

三角形的面积=底×高÷2

(三)巩固运用,解决问题

1.请同学们比较一下,两个不一样的三角形能不能拼成一个平行四边形?为什么?

2.讨论:谁说的对

叔叔:两个三角形能拼成一个平行四边形

小明:三角形的面积是平行四边形面积的一半

小玲:两个面积相等的三角形一定能拼成一个平行四边形

小红:两个完全一样的三角形能拼成一个平行四边形

3.填空

用两个完全一样的三角形可以拼成一个(),平行四边形的高等于()的高,平行四边形的底等于三角形的()。三角形的面积等于拼成的平行四边形面积的(),所以三角形的面积就等于()×()÷(),用字母表示是()

角形面积的教学设计【第四篇】

教学目标:

1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用。

教学重点:

掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点:

培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

课前准备:

直角三角形、锐角三角形、钝角三角形各一对,课件。

教学过程:

一、复习:

1、出示一个平行四边形。(课件)

“这是什么图形?”“平行四边形面积计算公式是什么?”

“用字母怎样表示?”“我们在推导平行四边形面积公式时,运用了什么方法?”

“通过割补法,把平行四边形转化成了什么图形?”

2、揭示课题:“同学们周日预习的主要内容是什么?”(板书:三角形的面积)

二、探究新知:

1、导入:

“通过预习,同学们对于三角形的面积有了一定的了解,那么,我们现在就要考查同学们预习的效果,如果有疑问,你看一看通过我们共同的努力是否把它解决了。”

“三角形的面积计算在我们没有预习前是一个陌生的知识,同学们想一想,三角形的面积计算是否可以像平行四边形那样,把它转化成我们学过的图形呢?”

2、小组学习:拼组三角形

让学生拿起桌面上的两个直角三角形。

“这两个三角形是什么三角形?”

“它们有什么特点?”(引导学生说出“完全一样”)

以此引导学生观察另外两组三角形。

“同学们想一想,用两个完全一样的三角形能否拼出我们学过的图形呢?而且拼出图形的面积还会计算。”

以小组为单位活动。

完成后汇报、交流。

3、通过观察、分析和计算,总结三角形面积计算公式。

“老师把用两个完全一样的三角形拼成的平行四边形放大了贴在黑板上,同学们注意观察,听老师的提问。”

“每个平行四边形的面积可以求出来吗?”“为什么?”

学生答出以后,写出每个平行四边形的底和高。

“这样能求了吗?”(板书算式)

“如果让你求其中一个三角形的面积,怎样列式?”(板书算式)

“通过我们上面求平行四边形和三角形的面积,同学们看一看,三角形和拼成的平行四边形有什么关系?”

引导学生说出。第二个和第三个同样讲解。

“同学们看一看,通过我们的实际操作和列式计算,我们是不是可以得出一些结论呢?”(课件出示,填空)

“你们可以总结出三角形的面积计算公式吗?”

“底×高”求的是什么?为什么要除以2?

“计算三角形的面积必须知道几个条件?是哪几个?

4、应用计算公式解决问题。

出示例题,让学生独立计算,解答后汇报、交流。

三、巩固练习:课件出示(略)

22 1111074
");